169. 'Face-to-Face'-Benzo-anellierte homologe Hypostrophene. Synthesen, Röntgenstrukturanalysen und PE-Spektren

von Wolf-Dieter Fessner, Gottfried Sedelmeier, Lothar Knothe und Horst Prinzbach*

Chemisches Laboratorium der Universität Freiburg i. Br., Institut für Organische Chemie und Biochemie, Albertstrasse 21, D-7800 Freiburg i. Br.

und Grety Rihs

Ciba-Geigy AG, CH-4002 Basel

und Zhong-zhi Yang¹), Branka Kovač²) und Edgar Heilbronner*

Institut für Physikalische Chemie der Universität Basel, Klingelbergstrasse 80, CH-4056 Basel

(10.11.87)

'Face-to-Face' Benzo-anellated Homologous Hypostrophenes. Syntheses, X-Ray-Structure Analyses and PE Spectra

'Face-to-face' benzo-anellated homologous hypostrophenes (series **M**), of interest as substrates for [6 + 6]photocycloaddition reactions, have been synthesized. From X-ray-structural analyses of **13b** and **13c** shortest C–C distances of 2.80(2.76)/2.71 Å and interorbital angles (ω) of 129° (128°)/130° between the benzene rings have been determined. The PE spectra are discussed in the context of transannular π , π interactions.

Die Verwendung benzoider Chromophore in photochemischen Synthesen ist eine schon klassische Zielsetzung [1]. Im Repertoire der Reaktionsmöglichkeiten ist die intrabzw. intermolekulare Vierring-Bildung zwischen zwei einfachen benzoiden Einheiten $(\mathbf{A} \rightarrow \mathbf{B})$ noch immer relativ selten [2] [3] (Schema 1). Präparativ interessierten uns solche [6 + 6]-Photocycloadditionen vor allem unter dem Aspekt, die resultierenden 'syn'-o,o-Dibenzol-Verbindungen – ausreichende Stabilität vorausgesetzt – über Domino-Diels-Alder-Additionen zum Aufbau polycyclischer Gerüste vom Typ C heranzuziehen. Dieses schon vor Jahren initierte Programm [4] umfasst u.a. die von den jeweils photochemisch gründlich untersuchten Dienen D, H und L abgeleiteten benzo-anellierten Substrate, in denen sich mit den Brücken X bzw. $(CH_2)_n$ die strukturellen Verhältnisse, d.h. die Bedingungen der transannularen Bindungsbildung, gezielt verändern lassen (Schema 1). Im Falle der vom 1,6-Dien $D(X = CH_2)$ abgeleiteten 'face-to-face'-Dibenzo-Verbindung E hatten wir erstmals ein (überraschend stabiles) 'syn'-o,o-Dibenzol-Derivat F isolieren und präparativ nutzen können ('Pagodane' [5], 'Dodecahedrane' [6]). Inzwischen wurden entsprechende Photogleichgewichte für analoge Gerüste E (u.a. mit $X = o - C_6 H_4$) beobachtet bzw. zur Synthese von Polycyclen G herangezogen [7]. In den auf dem flexibleren 1,6-Dien-Gerüst H basierenden Dibenzo-Substraten I ($X = CH_2$, CO, C(OCH₂)₂) mit als günstig eingeschätzten sterischen bzw. stereoelektronischen Voraussetzungen [8] konnte

¹⁾ Gegenwärtige Adresse: Institut für Theoretische Chemie, Jilin Universität, Changchun, Volksrepublik China.

²) Gegenwärtige Adresse: Rudger-Bošković-Institut, Zagreb, Jugoslawien.

Vierring-Bildung zu K bisher nicht beobachtet werden. Es gibt Gründe für die derzeit überprüfte Annahme, dass die Photoreaktionen $I \rightarrow K$ thermisch leichter umkehrbar sind [9] als die Photoreaktionen $E \rightarrow F$.

Nachdem in den 1,5-Dienen L mit n = 1 [10] und n = 2 [11], nicht aber mit n = 0(= Hypostrophen [12] [13]) effiziente [2 + 2]-Photocycloadditionen erreicht worden waren, wurden *a priori* auf der Basis der gegenüber den entsprechenden Dienen D kürzeren transannularen π,π -Abstände – bei weniger günstigen Interorbitalwinkeln – den [6 + 6]-Photocycloadditionen $M \rightarrow N$ gute Chancen eingeräumt. In dieser Arbeit berichten wir über die präparativ-synthetischen Vorarbeiten im Umfeld der 'face-to-face'-Dibenzo-Verbindungen M, über ihre strukturellen Gegebenheiten und über ihre PE-Spektren.

Synthesen. – In den Schemata 2^3) und 3 sind die bewährten Vorgehensweisen skizziert, nach denen Hypostrophen 1a [12], auch nach verbessertem Verfahren [13] noch immer recht aufwendig in der Herstellung, und die gut zugänglichen Homologen 1b [10] [14] [15] und 1c [11] einfach bzw. zweifach benzo-anelliert wurden. Dazu sei vorweggeschickt, dass die Wahl zwischen dem teureren und kürzeren Weg (Tetrachlorthiophen-

³) Die hier verwendete Nomenklatur für die benzo-anellierten Gerüste wurde von der Redaktion vorgeschlagen. Die Bezifferung wurde entsprechend den IUPAC-Regeln so gewählt, dass für die Brücken die kleinsten Hochzahlen, unabhängig von ihrer Position, resultieren (z. B. 6a: 2, 3, 8, 10, 13, 14 besser als 2, 7, 8, 10, 11, 14). Für die Röntgenstrukturanalysen (*Fig. 1* und *Tab. 2, 3, 5* und 6) wurde die in den früheren Arbeiten (z. B. [5] [8]) verwendete Nomenklatur beibehalten.

dioxid 5 [16] als Dien, Schema 2) und dem billigeren, eher längeren Weg (Tetrachlorcyclopentadienon-acetal 14 [17] als Dien, Schema 3) vor allem durch die sehr unterschiedliche thermische Stabilität der 1,5-Diene 1a-c bestimmt wird: 1a und 1c erfahren ab 80° [1,3]-, [12] bzw. [3,3]-sigmatrope [4] Verschiebung, während 1b bis mindestens 140° beständig ist. Zusätzliche Komplikationen waren a priori darin zu sehen, dass dyotrope H-Wanderung [18] auf der Stufe dihydroaromatischer Zwischenprodukte wie 6 und 18 vergleichsweise rasch bzw. dass die Dehydrierung der 'endo'-ständigen, sterisch stark abgeschirmten H-Atome in 11, 18 und 23 deutlich behindert sein könnte. Abzusehen war, dass die Erstadditionen (zu 6 und 15) schneller als die Zweitadditionen (zu 10 und 20) sind, die einfach anellierten Produkte 8 demnach selektiv herstellbar würden.

Das labile Hypostrophen 1a setzt sich mit dem reaktiven Sulfon 5 (ca. 1 equiv.) bei 0° rasch und stereoselektiv zu über 85% zum aus dem 'exo'-Angriff resultierenden Cyclohexadien 6a neben wenig 10a um (Schema 2). Bei 20° und mit ca. 2,2 equiv. 5 entsteht praktisch quantitativ das schwer lösliche 'exo', 'exo'-Bis(cyclohexadien) 10a. Behandlung von 10a mit KOH in heissem EtOH liefert in hoher Ausbeute ein (1:1)-Gemisch der stellungsisomeren Bis(trichlorbenzo)-hypostrophene 12a; bei kurzer Reaktionszeit lassen sich die rasch gebildeten Vorläufer 11a rein isolieren. Unter gleichen Bedingungen wird bei 6a statt Bildung von 7a nur Zersetzung festgestellt. Das hochgespannte Skelett von 12a ist unter Enthalogenierungsbedingungen (Na/NH₃, Li(Na)/t-BuOH) nicht beständig. Offensichtlich werden vornehmlich die bisbenzylischen (C-C)-Bindungen der Bicyclo[2.2.0]hexan-Einheit gespalten (u.a. zu Indan/Alkylbenzolen). Mildere Reduktionsmittel, wie z. B. aktives Mg [19], sind ineffektiv.

Nach Vorversuchen addiert **1a** unterhalb seiner Isomerisierungsschwelle bei 50–60° langsam auch das Acetal **14** zu **15a** und letzteres bei höherer Temp. zum Bisaddukt **20a**. Versuche zur Enthalogenierung von **12a** und zur Dehydrohalogenierung von **6a** wurden jedoch eingestellt, als die Photostudien kaum Chancen für [6 + 2]- bzw. [6 + 6]-Additionen erwarten liessen.

Das thermisch stabile 'Homohypostrophen'⁴) **1b** addiert in siedendem Toluol leicht 1 equiv. Acetal **14** zum Monoaddukt **15b**, zweifache Addition zu **20b** wird durch Umsetzung in siedendem Xylol erreicht (88 bzw. 85%; *Schema 3*). Die '*endo*'-Konfiguration ist durch die an halogen-freien Derivaten gemessene Kopplungskonstante J(1,2) = 4,5 Hz belegt. Durch Enthalogenierung mit Na/t-BuOH in THF [20] werden in guten Ausbeuten die Acetale **16b** bzw. **21b** (85 bzw. 82%) und nach Hydrolyse mit 30% H₂SO₄/CH₂Cl₂ die Ketone **17b** bzw. **22b** (92 bzw. 89%) erhalten. Beim Erhitzen in Toluol eliminieren beide Norbornenone rasch CO unter Bildung der Cyclohexadiene **18b** bzw. **23b** (94 bzw. 87%). In Vorversuchen zur Dehydrierung [21] der letzteren mit DDQ oder Chloranil dominierte die Addukt-Bildung. Da die alternative Aromatisierung am Pd/C-Kontakt speziell bei sterisch stark gehinderten Substraten energische Bedingungen erfordert, ist unter den stereoelektronischen Gegebenheiten von **18b** mit einer dyotropen Reaktion unter Aromatisierung bzw. Sättigung der (C(13)=C(14))-Bindung [22] zu rechnen. In der Tat wird **18b** beim Erhitzen in Diphenylether ab *ca.* 180° einheitlich zu **9b** isomerisiert. Die Dehydrierung von **18b** mit überschüssigem Pd/C gelingt denn auch nur unterhalb dieser

⁴) Tetracyclo[6.3.0.0^{2,6}.0^{5,9}]undeca-3,10-dien. Für dieses Gerüst wurde bisher eine inkorrekte Bezifferung verwendet (Tetracyclo[6.3.0.0^{4,11}.0^{5,9}]undeca-2,6-dien). Der in den Chem. Abstr. angegebene Name lautet 1,2,3,3a,4,6a-Hexahydro-1,2,4-[1]propen[1]yl[3]ylidenpentalen.

Schwelle bei 160°: Zu 64% entsteht Benzo-en **8b** als farbloses Öl neben 7% Dihydro-Derivat **9b**. Die Dehydrierung von Bis(cyclohexadien) **23b** erfordert demgegenüber deutlich höhere Aktivierung (starke sterische Hinderung im Zwischenprodukt): bei 200° fällt in Gegenwart von Pd/C neben dem gut kristallisierenden Dibenzohomohypostrophen **13b** (65%) das halbseitig gesättigte **24b** (10%) an. Noch weniger selektiv verläuft die Umsetzung von **23b** mit 2 equiv. N-Bromsuccinimid in CCl₄ unter Rückfluss, die (*via* Allylbromierung/Dehydrobromierung) nur 30–50% **13b** erbringt.

Zur Vermeidung dieser Komplikationen wurde zur Benzo-anellierung von 1b auch das letzlich vorteilhaftere Verfahren nach Schema 2 überprüft. Homohypostrophen 1b addiert das Sulfon 5 (ca. 0,9 equiv.) bereits bei 0° unter Bildung des sterisch einheitlichen 'exo'-Cyclohexadiens 6b (96%); mit 2,1 equiv. 5 und bei erhöhter Temperatur (ca. 80°)⁵) wird wiederum praktisch quantitativ das 'exo, exo'-Bis(cyclohexadien) 10b gewonnen. Letzteres ist auch aus 20b durch saure Hydrolyse (konz. H₂SO₄; 81 % 19b) und Decarbonylierung [23] (Xylol, Rückfluss; 97%) erhältlich. Die Dehydrohalogenierung von 10b zu 11b (94%) erfolgt mit KOH in siedendem EtOH; längere Einwirkung führt zu den Stellungsisomeren 12b ((1:1)-Gemisch, 73%). In der deutlichen Abnahme der Reaktionsgeschwindigkeit für den zweiten Schritt (11b→12b) sowie in der Abnahme der Ausbeute im Vergleich zur niedrigeren homologen Reihe (11 $a \rightarrow 12a$) reflektiert sich die zunehmende sterische Abschirmung der zu eliminierenden H-Atome in 11b durch den benachbarten Aromaten bei Vergrösserung der Brücke (CH₂)_n. Reduktion von 12b mit Na schliesst die Sequenz zu 13b in guter Ausbeute (85%) ab. Die Dehydrohalogenierung von 6b ergibt ein dunkles Öl, aus dem 7b (60%) nur durch präp. HPLC von mehreren olefinischen/aromatischen Komponenten abgetrennt werden kann. Wegen der Anfälligkeit von 7b zur Polymerisation und Zersetzung und wegen Trennproblemen wurde dieser Weg zu 8b nicht weiter verfolgt.

Die Problematik der Benzo-Anellierung von 1c wird durch folgende Ergebnisse belegt: Bei der Umsetzung von 1c mit überschüssigem Acetal 14 in Xylol bei 140°C ist 4c (Schema 3), das Bisaddukt des Cope-Isomeren 3c, das einzige monomere Produkt. Mit 5 reagiert 1c schon bei 60° ausreichend rasch, sodass sich die Cope-Isomerisierung völlig vermeiden lässt; 6c wird in 85% Ausbeute erhalten (Schema 2). Mehr noch als im Falle von 6b ist indes die basische Dehydrohalogenierung (KOH/EtOH) von 6c von Zersetzungsreaktionen begleitet, die u.a. in zunehmender transannularer Bindungsbildung ihre Ursache haben dürften. Reduktion von 6c mit Li führt hauptsächlich (90%) zu einem Gemisch (ca. 2:1) der $C_{16}H_{20}$ -Isomeren **25/26** (Schema 4); diese partielle Hydrierung des Cyclohexadien-Ringes von 6c wird indes bei Reduktion mit Na weitgehend vermieden; das Rohprodukt enthält neben 18c (81 % isoliert) nur wenig 25/26. Die Dehydrierung des Gemischs 25/26 an Pd/C unter notwendigerweise energischen Bedingungen (200°) führt ausschliesslich zu 9c (75% isoliert). Die Absättigung der Äthylen-(C=C)-Bindung ist auch bei der zur Vermeidung der dyotropen Umwandlung bei 150° durchgeführten Dehydrierung von 18c (einheitliche Isomerisierung ab ca. 160° zu 9c) eine Konkurrenz: Neben 25% 25 und 34% 9c werden 28% farbloses, kristallines Benzo-en 8c gewonnen.

⁵) Die im *Exper. Teil* beschriebene dyotrope Umwandlung von **6b** und **6c** zu **i** bzw. **ii** wird erst oberhalb *ca*. 180 bzw. 160° beobachtet.

Zur Herstellung der Dibenzo-Verbindung 13c wurde schliesslich der durch die Arbeiten von *Fray et al.* [24] bzw. *Raasch* [16] vorgezeichnete Weg eingeschlagen: Umsetzung von Dibenzocyclooctatetraen 27 und Sulfon 5 in siedendem Xylol ergibt 28 (73%; *Schema 4*), dessen Enthalogenierung zu 29 (42%) einmal mehr von erheblicher Zersetzung begleitet ist. Hydrierung zu 13c (93%) bzw. Epoxidierung zu 30 (85%) sind unproblematisch.

Die Benzo/En- bzw. Benzo/Benzo-Nahordnung in den Homologen **8b**, c bzw. **13b**, c hat in den ¹H-NMR-Spektren (CDCl₃) auch grössenordnungsmässig die erwarteten Konsequenzen: Das Signal der Vinyl-Protonen von **8b**, c ist im Vergleich zu **2b**, c um *ca*. 0,4 ppm nach höherem Feld verschoben; vergleichbar ($\Delta \delta = 0,30$ und 0,37 ppm) sind die Benzo-Protonen in **13b**, c und **9b**, c diamagnetisch abgeschirmt. Der Effekt ist aber eindeutig schwächer als im Gerüst E (X = CH₂, $\delta = 6,50$ ppm [2]) oder im [2,2]Paracyclophan ($\delta = 6,46$ ppm (CDCl₃) [25]). Auf die ¹³C-NMR-Verschiebungen der Benzo-Einheiten hat die 'face-to-face'-Orientierung keinen signifikanten Einfluss.

Mit 13c steht die Dibenzo-Verbindung zur Verfügung, für welche in der homologen Reihe 13 am ehesten (vgl. unten Fig.3) eine [6 + 6]-Photocycloaddition erwartet werden kann. In den bisherigen Photolysestudien [7] sind allerdings nur die Produkte einer einfachen transannularen Verbrückung beobachtet worden, wobei noch ungeklärt ist, ob überhaupt oder inwieweit bei sehr tiefen Temperaturen die thermisch sicherlich sehr leicht reversible [6 + 6]-Photocycloaddition vorgeschaltet ist. Damit zeichnet sich ab, dass die auf diesem Weg angestrebten präparativen Zielsetzungen $(\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C})$ in der Reihe M nur geringe Chancen haben. Es wurde deshalb auch darauf verzichtet, die präparativen Vorarbeiten in allen Einzelheiten zu optimieren bzw. diese im gesamten Umfang hier wiederzugeben. Aufgenommen sind im *Exper. Teil* allerdings die Details der Herstellung des Diens 1c und eine letztlich erfolglose Alternativroute zum Benzo-En 8c ausgehend von 35. Letztere zeigt einmal mehr, dass Nahordnung von chromophoren Einheiten, welche eine transannulare Bindungsbildung ermöglichen würde, ihren präparativen Preis darin hat, dass üblicherweise problemlose chemische Transformationen problematisch werden können.

In Anlehnung an die Herstellung von 1b [10] war das Dien 1c ausgehend vom Diketon 31 [26] über das Diol 32 und die Diiodide 33 in nur sehr bescheidener Ausbeute (bis zu 15% bzgl. 31) zugänglich (Schema 5). Reduktion des Diketons 31 zum Enon 35 (61%) neben 34 (34%) und Bamford-Stevens-Abbau des aus 35 hergestellten Tosylhydrazons 36 (84%) erbringen alternativ bis zu 30% 1c bzgl. 31 [15]. Die mit der Sequenz $35 \rightarrow 38 \rightarrow 41$ angestrebte Herstellung des Benzo-ens 8c (Schema 6) hat a priori den Vorteil, dass Komplikationen durch dyotrope H-Wanderung nicht auftreten können. Aus der Umsetzung von 35 mit dem Dien 5 in siedendem 1,2-Dichlorethan gewinnt man 70% 37 und daraus praktisch quantitativ das Gemisch der isomeren Benzoketone

Schema 6

38. Diese lassen sich indes unter vielfach modifizierten Bedingungen (auch Zusatz von Lewis-Katalysatoren) mit p-Tosylhydrazin nicht kondensieren. Eine 'endo'-OH-Gruppe wird aber toleriert, wie die Reduktion mit LiAlH₄ zu 39 (98%, Isomerengemisch) zeigt. Enthalogenisierung (Na, t-BuOH, THF; \rightarrow 40) und Veresterung ergeben das kristalline Mesylat 41. Unter diversen Bedingungen mit verschiedenen, in ähnlichen Fällen wirksamen Basen ist die Mesylat-Eliminierung zu 8c jedoch nicht gelungen. Die 'endo' -Stellung des OR-Restes in 40 und 41 ist u. a. durch eine paramagnetische Verschiebung von ca. 0,3 ppm des diesen Gruppen gegenüberstehenden o-Benzo-Protons belegt.

Röntgenstrukturanalysen der 'face-to-face'-Dibenzo-Verbindungen 13b und 13c. – Die beiden Strukturen 13b und 13c (*Fig. 1*) wurden mit direkten Methoden gelöst. Die 'least-squares'-Verfeinerungen konvergierten für die Nicht-H-Atome bei R = 0,061 bzw.

Fig. 1. Struktur von a) 13b und b) 13c

Tab. 1. Kristallstrukturdaten von 13 b	und	13c
---	-----	-----

	13b	13c
Formel	C ₁₉ H ₁₆	C ₂₀ H ₁₈
Kristallgrösse [mm]	$0,45 \times 0,45 \times 0,2$	0,5 imes 0,45 imes 0,45
Kristallsystem	orthorhombisch	monoklin
Raumgruppe $a [\hat{A}]$ $b [\hat{A}]$ $c [\hat{A}]$ $\beta [^{\circ}]$ $V [\hat{A}^{3}]$ Z	Pnc 2 8,693 8,563 17,740 1321 4	<i>P2</i> ₁ / <i>n</i> 8,642 8,734 18,619 88,96 1405 4
Molekülsymmetrie	C_2	C_1
20-Bereich	$0 < 2\theta < 54$	$0 < 2\theta < 46$
gemessene Daten	1707	3227
Daten mit $I > 2\sigma(I)$	781	1536
R-Faktor	0,061	0,042

0,042. Die Resultate sind in Tab. 1 zusammengefasst. Im Kristall von 13b liegen zwei kristallographisch nicht-äquivalente Moleküle vor (in Fig. 1 nur Molekül 1 gezeigt). Die Packung (Fig. 2) entspricht den Erwartungen; intermolekulare Wechselwirkungen bewirken geringe Abweichungen von der $C_{2\nu}$ -Symmetrie der freien Moleküle zu C_2 . Die (C-C)-Bindungslängen, Bindungswinkel und ausgewählte Torsionswinkel sind in den Tab.2 und 3 zusammengestellt (Kristallkoordinaten im Exper. Teil, Tab.5 und 6). Gemeinsam ist den Strukturen 13b und 13c, dass hinsichtlich der Bindungslängen die 'bisallylischen' (C-C)-Bindungen des Cyclooctadien-Segments erheblich, für beide Strukturen auf einen (Mittel)wert von 1,62 Å, verlängert sind. Die Ursachen von Bin-

Bindungslänge	Molekül 1	Molekül 2
C(1)-C(2)	1,63 (1)	1.61 (1)
C(2)C(3)	1,50(1)	1,48 (1)
C(2)C(6)	1,56(1)	1,54 (1)
C(3)C(4)	1,37 (1)	1,41 (1)
C(3)-C(6')	1,42(1)	1,38 (1)
C(3') - C(4')	1,42 (1)	1,41 (1)
C(4')-C(5')	1,37 (1)	1,41 (1)
C(5') - C(6')	1,43 (1)	1,38 (1)
C(4)C(1s)	1,50(1)	1,47 (1)
C(6) - C(1s)	1,54 (1)	1,54 (1)
C(6)C(7)	1,55 (1)	1,53 (1)
Bindungswinkel	Molekül 1	Molekül 2
C(1)-C(2)-C(3)	114,0 (7)	117.3 (7)
C(1) - C(2) - C(6)	102,6(7)	102,5(8)
C(3)-C(2)-C(6)	99,9 (7)	102,9 (7)
C(2)-C(1)-C(4s)	111,6(7)	108,8 (7)
C(2)-C(1)-C(6s)	98,5 (7)	99,5 (7)
C(4s) - C(1) - C(6s)	103,1 (7)	101,3 (7)
C(2)-C(3)-C(4)	111,7 (8)	105,9(7)
C(2)-C(3)-C(6')	127,9 (8)	132,5 (8)
C(4)-C(3)-C(6')	120,5 (8)	121,6 (8)
C(3)-C(4)-C(1s)	107,6 (7)	111,0 (8)
C(3)-C(4)-C(3')	123,4 (8)	117,9 (8)
C(3')-C(4)-C(1s)	128,9 (7)	131,9 (8)
C(4) - C(3') - C(4')	116,7 (8)	119,9 (8)
C(3')-C(4')-C(5')	122,2 (8)	121,5 (8)
C(4')-C(5')-C(6')	120,1 (8)	119,1 (8)
C(5')-C(6')-C(3)	117,1 (8)	120,1 (8)
C(2)-C(6)-C(1s)	100,0 (7)	99,4 (7)
C(2)-C(6)-C(7)	105,8 (6)	105,6 (7)
C(1s) - C(6) - C(7)	109,5 (7)	106,4 (7)
C(6) - C(7) - C(6s)	90,7 (7)	93,5 (7)

Tab. 2. Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] von 13b

Torsionswinkel	Molekül 1	Molekül 2
C(1s)-C(6)-C(2)-C(3)	-39,3	-42,7
C(4) - C(3) - C(6') - C(5')	0,0	-0,2
C(2)-C(3)-C(6')-C(5')	-179,5	179,9
C(6')-C(3)-C(4)-C(3')	1,3	-0,3
C(6')-C(3)-C(4)-C(1s)	177,1	175,9
C(2)-C(3)-C(4)-C(3')	-179,1	179,6
C(2)-C(3)-C(4)-C(1s)	-3,3	-4,1
C(6')C(3)-C(2)-C(6)	-152,7	-150,2
C(4)-C(3)-C(2)-C(6)	27,7	29,9
C(3)-C(6')-C(5')-C(4')	-2,3	0,5
C(6') - C(5') - C(4') - C(3')	3,5	-0,2
C(5')-C(4')-C(3')-C(4)	-2,1	-0,3
C(4') - C(3') - C(4) - C(3)	-0,3	0,6
C(4')-C(3')-C(4)-C(1s)	-175,1	-174,8
C(3) - C(4) - C(1s) - C(6)	-23,1	-23,1
C(3')-C(4)-C(1s)-C(6)	152,3	152,5
C(4)-C(1s)-C(6)-C(2)	38,6	39,2
C(4) - C(1s) - C(6) - C(7)	149,5	148,6
C(3)C(2)C(6)C(7)	-153,0	-152,8

dungsverlängerungen dieses Ausmasses in Käfigmolekülen sind ausführlich diskutiert [27]. Die durch die Nachbarschaft der Benzo-Ringe bedingte sterische Spannung wird offensichtlich primär von diesen Bindungen aufgefangen, die Benzo-Ringe sind jedenfalls generell im Rahmen der Fehlergrenzen planar und die Anellierungspositionen nur schwach (2–3°) in Richtung auf eine Verringerung der Transannularspannung pyramidalisiert. Im Zusammenhang mit der PE-Analyse (s. unten) durchgeführte MNDO und MINDO/3-Rechnungen [28] geben für die d_1 -Abstände zu kleine (13b: 1,59 und 1,59 Å; 13c: 1,58 und 1,59 Å), für die d_2 -Abstände hingegen zu grosse Werte (13b: 2,87 und 3,08 Å; 13c: 2,79 und 2,99 Å). In Kraftfeld-Rechnungen [9] [29] werden beide Abstände generell zu klein gefunden.

In *Fig. 3* sind die für die Photochemie relevanten strukturellen Details von 13b, c und des von *Irngartinger* [30] analysierten Tribenzotetracyclododecatriens 42 (Reihe M) denen von 43 [2] /44 [31] (Reihe E) und von 45 [8] (Reihe I) gegenübergestellt. Für 43 hatten wir eine Pyramidalisierung von *ca.* 5° bestimmt, aus den für 42 und 44 publizierten Daten

Bindungslänge		Bindungslänge	Bindungslänge		Bindungslänge	
C(1)-C(2)	1,53 (1)	C(6")-C(5")	1,39 (1)	C(4)-C(5)	1,61 (1)	
C(2)-C(3)	1,42(1)	C(5'') - C(4'')	1,39(1)	C(5)-C(6)	1,53 (1)	
C(3)-C(3')	1,38 (1)	C(4")-C(3")	1,44 (1)	C(5) - C(9)	1,56(1)	
C(3')-C(4')	1,42(1)	C(3")C(7)	1,38(1)	C(8)-C(9)	1,57 (1)	
C(4')-C(5')	1,40(1)	C(7)-C(8)	1,54 (1)	C(9) - C(10)	1,56(1)	
C(5') - C(6')	1,42(1)	C(8) - C(1)	1,63 (1)	C(10) - C(11)	1,54 (1)	
C(6')-C(2)	1,44 (1)	C(1) - C(12)	1,55 (1)	C(11) - C(12)	1,54 (1)	
C(6)-C(6")	1,45 (1)	C(4) - C(12)	1,56(1)			
C(6) - C(7)	1,39(1)	C(3) - C(4)	1,55(1)			

Tab. 3. Bindungslängen [Å], Bindungswinkel [°] und Torsionswinkel [°] von 13c

Bindungswinkel		Bindungswinkel		Bindungswinkel	
C(1)-C(2)-C(6')	129,2 (7)	C(3)-C(4)-C(12)	96,7 (5)	C(1)C(8)C(7)	111,6 (5)
C(1)-C(2)-C(3)	108,9 (6)	C(5)-C(4)-C(12)	107,4 (6)	C(7) - C(8) - C(9)	97,8 (5)
C(3)-C(2)-C(6')	121,8 (7)	C(6) - C(5) - C(9)	96,1 (6)	C(5)-C(6)-C(6")	127,9 (7)
C(2)-C(3)-C(3')	122,6 (6)	C(4) - C(5) - C(6)	112,9 (5)	C(5)-C(6)-C(7)	110,9 (6)
C(3')-C(3)-C(4)	128,9 (7)	C(4) - C(5) - C(9)	110,5 (5)	C(6'') - C(6) - C(7)	121,1 (7)
C(2) - C(3) - C(4)	108,5 (6)	C(11)-C(12)-C(4)	113,5 (5)	C(6) - C(7) - C(8)	107,0 (6)
C(3)-C(3')-C(4')	117,4 (7)	C(11)-C(12)-C(1)	114,4 (6)	C(6)C(7)-C(3")	122,8 (6)
C(3')-C(4')-C(5')	119,8 (8)	C(4) - C(12) - C(1)	100,9 (5)	C(8) - C(7) - C(3'')	130,1 (7)
C(4')-C(5')-C(6')	124,5 (7)	C(8) - C(9) - C(5)	99,6 (5)	C(7)-C(3'')-C(4'')	116,4 (7)
C(5')-C(6')-C(2)	113,8 (7)	C(8) - C(9) - C(10)	114,4 (5)	C(3")-C(4")-C(5")	121,1 (8)
C(2) - C(1) - C(12)	97,9 (6)	C(5)-C(9)-C(10)	113,3 (6)	C(4")-C(5")-C(6")	122,6 (7)
C(2)-C(1)-C(8)	109,5 (5)	C(9) - C(10) - C(11)	111,0 (5)	C(5'') - C(6'') - C(6)	116,0 (7)
C(8)-C(1)-C(12)	110,7 (5)	C(10)-C(11)-C(12)	110,1 (5)		,
C(3) - C(4) - C(5)	109,0 (5)	C(1) - C(8) - C(9)	106,6 (6)		

Torsionswinkel	Torsionswinkel	Torsionswinkel
C(1)-C(2)-C(6')-C(5') -175,8	C(3)-C(4)-C(5)-C(9) 105,8	C(5)-C(9)-C(10)-C(11) -55,2
C(1)-C(2)-C(3)-C(3') 177,2	C(3)-C(2)-C(1)-C(8) 85,5	C(5)-C(4)-C(12)-C(11) -58,9
C(1)-C(2)-C(3)-C(4) -0,7	C(3')-C(3)-C(2)-C(6') 0,8	C(5)-C(6)-C(7)-C(8) 0,9
C(1)-C(8)-C(7)-C(3") 100,8	C(3')-C(4')-C(5')-C(6') -2,9	C(6)-C(5)-C(9)-C(8) 49,1
C(1)-C(8)-C(7)-C(6) -81,0	C(3')-C(3)-C(4)-C(5) 101,8	C(6)-C(5)-C(4)-C(12) -104,3
C(1)-C(8)-C(9)-C(5) 65,8	C(3')-C(3)-C(4)-C(12) -147,2	C(6)-C(5)-C(9)-C(10) 171,0
C(1)-C(12)-C(4)-C(3) -48,4	C(3'')-C(4'')-C(5'')-C(6'') -0,7	C(6)-C(7)-C(8)-C(9) 30,4
C(1)-C(12)-C(4)-C(5) 64,0	C(3'') - C(7) - C(6) - C(6'') 2,2	C(6')-C(2)-C(1)-C(8) -98,5
C(1)-C(12)-C(11)-C(10) -55,8	C(3")C(7)C(6)C(5) 179,3	C(6')-C(2)-C(1)-C(12) 146,1
C(1)-C(8)-C(9)-C(10) -55,4	C(3'')-C(7)-C(8)-C(9) -147,8	C(6")-C(6)-C(7)-C(8) -176,1
C(2)-C(3)-C(3')-C(4') -2,3	C(4)-C(3)-C(3')-C(4') 175,1	C(6")-C(6)-C(5)-C(9) 144,7
C(2)C(6')C(5')C(4') 1,3	C(4)-C(3)-C(2)-C(6') -177,0	C(5'')-C(4'')-C(3'')-C(7) 1,2
C(2)-C(1)-C(12)-C(4) 48,5	C(4)C(5)C(6)-C(7) 83,2	C(5")-C(6")-C(6)-C(7) -1,5
C(2)-C(3)-C(4)-C(5) -80,5	C(4)-C(5)-C(6)-C(6'') -100,0	C(7)-C(8)-C(9)-C(10) -170,8
C(2)-C(3)-C(4)-C(12) 30,5	C(4)-C(5)-C(9)-C(10) 53,8	C(7)-C(6)-C(5)-C(9) -32,1
C(2)-C(1)-C(12)-C(11) 170,8	C(4)-C(12)-C(1)-C(8) -65,8	C(7)-C(8)-C(1)-C(12) 105,2
C(2)-C(1)-C(8)-C(7) -1,6	C(4)-C(5)-C(9)-C(8) -68,2	C(8)-C(9)-C(10)-C(11) 58,0
C(2)-C(1)-C(8)-C(9) -107,4	C(4)-C(12)-C(11)-C(10) 59,4	C(8)-C(1)-C(12)-C(11) 56,4
C(3)-C(3')-C(4')-C(5') 3,2	C(4'')-C(3'')-C(7)-C(6) -2,0	C(9)-C(5)-C(4)-C(12) 2,0
C(3)-C(2)-C(6')-C(5') -0,2	C(4'')-C(5'')-C(6'')-C(6) 0,8	C(9)-C(10)-C(11)-C(12) -1,0
C(3)-C(2)-C(1)-C(12) -29,9	C(4")-C(3")-C(7)-C(8) 175,9	C(9)-C(8)-C(1)-C(12) -0,5
C(3)-C(4)-C(12)-C(11) -171,3	C(5)-C(6)-C(6")-C(5") -178,0	
C(3)-C(4)-C(5)-C(6) -0,5	C(5)-C(9)-C(8)-C(7) -49,6	

Fig. 3. Röntgenographisch ermittelte d-[Å] und w-Werte [°] der Verbindungen 13b (Molekül 1), 13c und 42-45

lässt sich eine solche von *ca.* 2°/6° berechnen. Wie in **42** liegen die d_2 -Abstände in **13b**, **c** weit unterhalb des (*van-der-Waals-* π/π)-Abstandes von *ca.* 3,4 Å [32], der von der Verlängerung der (CH₂)_n-Brücke in **13** [33] erwartete 'buttressing effect' mit $\Delta d_2 = -0,09$ Å bzw. $\Delta \omega = +1^\circ$ im Bereich der Fehlergrenzen⁶).

Die signifikanten Unterschiede von 43/44 gegenüber 13b, c sind die bei grösseren d_2 -Abständen sehr viel grösseren, effizientere π/π -Wechselwirkungen garantierenden ω -Werte. Im Falle von 43 und des Grundgerüstes von 44 war ein Photogleichgewicht (ca. 3:7 bzw. 2:1) mit dem jeweiligen [6 + 6]-Addukt bei monochromatischer Anregung ($\lambda = 254$ nm) realisiert worden [5] [7].

PE-Spektren von 13b und 13c. – Die *Fig. 4* und 5 zeigen den Bereich von 7 bis 10 eV der He($I\alpha$)-PE-Spektren der Verbindungen **9b**, **8b** und **13b** bzw. **9c**, **8c** und **13c**. Wie für Moleküle dieser Komplexität nicht anders zu erwarten, sind die Spektren zum Teil nur mangelhaft aufgelöst, so dass die Lagen I_j^m der Bandenmaxima nicht mit der wünschenswerten Genauigkeit gemessen werden können. Damit haftet auch der nachstehenden Deutung ein gewisses Mass an Willkür an, insbesondere was die Sequenz stark überlappender Banden betrifft. Konservative Schätzungen der Bandenlagen I_j^m finden sich in

⁶) In dem zu 13b analogen zweifach Chinolin-anellierten Gerüst wurden d₂-Abstände von 2,78(2,89) Å und ein ω-Wert von 129,5° gemessen (R.P. Thummel, J.-L. Lim, *Tetrahedron Lett.* 1987, 28, 3319; vgl. auch S. Mataka, K. Takahashi, T. Mimura, T. Hirota, K. Takuma, H. Kobayashi, M. Tashiro, J. Org. Chem. 1987, 52, 2653).

Fig. 5. He(Ia)-PE-Spektren der Moleküle a) 9c, b) 8c und c) 13c. Beachte, dass die Streckung der Abszissen von derjenigen der Fig. 4 verschieden ist, da die beiden Sätze von Spektren auf verschiedenen Spektrometern aufgenommen wurden.

Tab. 4 und in Fig. 6, in welchen auch Zuordnungen angegeben sind, die allerdings im Fall von 13b und 13c nur den Charakter von Arbeitshypothesen besitzen.

Erklärtes Ziel der PE-spektroskopischen Untersuchung war es, unter implizierter Verwendung von Koopmanns Theorem anhand der ersten vier I_j^m -Werte der Moleküle 13b und 13c einen Hinweis auf die Sequenz und die relative Staffelung der von den $\pi(1e_{ig})$ -Orbitalen der beiden Benzol-Kerne dominierten Molekülorbitale zu gewinnen. Aus der sich so ergebenden Zuordnung sollten dann Rückschlüsse auf die 'through-space'- und 'through-bond'-Wechselwirkungen [34] zwischen den π -Orbitalen der beiden Benzol-Kerne gezogen werden, wie dies mit Erfolg für 1,4[2.2]Cyclophane (= [2.2]Paracyclophane) und verwandte Moleküle möglich war [35], in denen ähnliche Verhältnisse wie in 13b und 13c vorliegen. In der Tat beträgt die räumliche Trennung der beiden gegenüberliegenden Benzol-Kerne (vgl. Fig. 3) im Mittel $\overline{d} = 3,8, \text{Å}$ ($d_2 = 2,8 \text{ Å}; 13b$) und $\overline{d} = 3,7_0 \text{ Å}$ ($d_2 = 2,7 \text{ Å}; 13c$), verglichen mit $\overline{d} = 2,9 \text{ Å}$ im [2.2]Paracyclophane [36]. Wäh-

Tab. 4. Lage I^m_j/eV der Maxima in den PE-Spektren der Fig. 4 und 5. Fehler ca. ±0,05 eV, wenn zweite Dezimale als Subskript, und ca. ±0,1 eV, wenn nur eine Dezimale angegeben. Werte in Klammern beziehen sich auf Schultern oder nicht auflösbare Mehrfachbanden. Die Reihenfolge der Orbitale in eckigen Klammern ist willkürlich.

	1	2	3	4		1	0	3	4
9b	8,2 A(a')	8,8 ₀ S(a")			9c	8,2 ₅ A(a')	8,7 ₅ S(a'')	_	
8b	8,2_0 A(a)	8,7— [S(a");	(8,9) $\pi(a')]$		8c	(8,25)	(8,6?)— [S(a");	$8,7_5$ $\pi(a')]$	
13b	8,2		(8,6)	-9,0 ₀	13c	(8,1)		(8,5)	8,95
	$A_{+}(b_{2}); A_{+}(b_{2})$	$A_{(a_1)}$	$[S_+(a_2); S]$	_(b ₁)]		$[A_{+}(b_{2});$	$A_{-}(a_{1}) S_{+}$	$(a_2); S_{-}(b_1)$	l

Fig. 6. Korrelationsdiagramm der PE-Spektren von 46b, 9b, 8b, 13b und von 46c, 9c, 8c, 13c. Die Lage und die Sequenz der Banden innerhalb der schraffierten Zonen ist nicht gesichert.

rend im letztgenannten Molekül die beiden Benzol-Ringe (abgesehen von ihrer Verbiegung) parallel liegen ($\omega = 180^\circ$), sind die Diederwinkel für **13b** und **13c** ca. $\omega = 130^\circ$, was bei der Berechnung des 'through-space'-Kopplungsparameters, z. B. entsprechend der Formel (14) in [35], zu berücksichtigen ist (vgl. dazu [37]).

Entsprechend einer früher festgelegten Konvention [36] [37] bezeichnen wir die beiden reellen π -Orbitale des le_{1g}-Paars eines Benzol-Kerns mit A und S und die bezüglich der $C_{2\nu}$ -Symmetrie der Moleküle 13b und 13c gebildeten Linearkombinationen mit A₊, A₋, S₊ und S₋, so wie es im *Schema 7* angegeben ist. (Beachte, dass die '+'-Kombinationen antisymmetrisch, die '-'-Kombinationen symmetrisch bezüglich einer Spiegelung an der *z*, *x*-Ebene sind.) Die unter den Linearkombinationen angegebenen Symmetrie-Symbole beziehen sich auf die Definition der *x*- und *y*-Achse im Diagramm.

Die 'through-space'-Kopplungsparameter $\tau(A)$ und $\tau(S)$, welche entsprechend $\alpha(A) \pm \tau(A)$ und $\alpha(S) \pm \tau(S)$ die Orbital-Energien der Linearkombinationen A_{\pm} und S_{\pm} festlegen ($\alpha(S), \alpha(A) =$ Basisenergien der S- und A-Orbitale der Benzol-Kerne), lassen

sich für die Moleküle 13b und 13c anhand der experimentell bestimmten Struktur nach den in [35] [37] beschriebenen Verfahren einigermassen zuverlässig schätzen. Repräsentative Werte sind von der Grössenordnung $\tau(A) \approx 0.6$ eV und $\tau(S) \approx 0.2$ eV, eventuell etwas kleiner. Hingegen ist es ausserordentlich schwierig, einen qualitativen Einblick in die 'through-bond'-Wechselwirkungen zu erlangen, weil sich - im Gegensatz zu den Cyclophanen – eine grosse Zahl energetisch günstiger σ -Orbitale des Bicyclo-[2.2.1]heptan- bzw. des Bicyclo[2.2.2]octan-Gerüsts anbieten. In Schema 7 sind die zu den einzelnen irreduziblen Darstellungen von C_{2v} gehörigen, höchstliegenden σ -Orbitale schematisch dargestellt (vgl. dazu [38] und beachte, dass dort die Achsen anders definiert wurden). Wie ersichtlich, gibt es für jede der vier Linearkombinationen S₊, S₋, A₊ und A₋ günstige Relaisorbitale für eine effiziente 'through-bond'-Wechselwirkung, welche eine Destabilisierung der Orbital-Energien, d.h. eine Erniedrigung der Ionisierungsenergien bewirkt. Modellrechnungen in Anlehnung an das in [37] und [39] vorgeschlagene Verfahren sowie mittels des MINDO/3-Modells [28] zeigen, dass bereits minimale Änderungen in den geometrischen Parametern und/oder den Energien der Basisorbitale bzw. den zwischen ihnen auftretenden Kreuztermen zu Vertauschungen der Sequenz der vier obersten, besetzten Orbitale der Moleküle 13b und 13c Anlass geben können. Es ist deshalb nicht möglich, einigermassen gesicherte Aussagen über die Zuordnung der PE-Banden zu präsentieren, die über die nachstehenden Bemerkungen hinausgehen.

1) Die π^{-1} -Ionisationsenergien der Monoene **46b** und **46c** betragen $I_i^m = 8,75$ eV und $I_i^m = 8,65$ eV [11], was einer durch das σ -Gerüst hervorgerufenen Verschiebung der Basisenergie α der Doppelbindungs-2p-AO's von $\delta(\alpha(\sigma)) \approx 1,9$ eV entspricht. (Zum Vergleich: $\delta(\alpha(t-Bu)) = 1,4$ eV [40].) Das Verhältnis des relativen Einflusses eines Cyclooctan-Ringes im Benzocycloocten **47** auf die Orbital-Energie der S- und A-Orbitale des

Benzol-Kerns $I^m(S^{-1}) = 8,91 \text{ eV}$; $I^m(A^{-1}) = 8,42 \text{ eV}$ [41] beträgt $\Delta(I^m(A^{-1}))/\Delta(I^m(S^{-1}))$ = 2,5, wenn man die Δ -Werte auf $I_1^m(\text{Benzol}) = 10,25 \text{ eV}$ bezieht. Demzufolge sagt man für **9b** und **9c** die Ionisierungsenergien $I_1^m = 8,3 \text{ eV}$ (A⁻¹) und $I_2^m = 8,9 \text{ eV}$ (S⁻¹) voraus, in befriedigender Übereinstimmung mit den beobachteten Daten (vgl. *Tab. 4*).

2) Gestützt auf die Deutung der PE-Spektren von 1b, 1c, 9b und 9c [4] [11] ist die Zuordnung der Banden in den Spektren von 8b und 8c offensichtlich. Insbesondere erwartet man die S⁻¹-Bande des Benzol-Kerns am gleichen Ort wie in **9b** und **9c**, da eine We check with the second dem π -Orbital der Doppelbindung symmetrie-verboten ist. Andererseits hätte man erwartet, dass sich die 'through-space'-Wechselwirkung zwischen den semilokalisierten Orbitalen A des Benzol-Kerns und π der Doppelbindung in einer merkbaren Verschiebung der respektiven PE-Banden verglichen mit ihren Lagen in den PE-Spektren von 1b, 9b und 1c, 9c auswirken würde. Dies ist aber nicht der Fall. Einer der Gründe ist sicherlich, dass wegen der sehr grossen Wechselwirkung von A und von π mit den Gerüst- σ -Orbitalen vom Typus a₁ und b₂ (vgl. Schema 7) ein vergleichsweise kleiner 'through-space'-Kreuzterm τ nur einen geringen Einfluss auf die beiden, stark σ/π -gemischten, obersten Orbitale ausübt. Ferner lässt sich anhand einfacher Modell-Rechnungen zeigen, dass durch die Einführung eines 'through-space'-Wechselwirkungsterms τ die relativen Beiträge von A und π zu den entsprechenden Molekülorbitalen so verändert werden, dass eine Kompensation der 'through-bond'- und 'throughspace'-induzierten Verschiebungen auftreten kann.

3) Die unter 2 angesprochenen Effekte wirken sich, trotz deren höherer Symmetrie (C_{2v}) , besonders gravierend in den Molekülen **13b** und **13c** aus, so dass, ganz abgesehen von der experimentellen Schwierigkeit einer sinnvollen Dekonvolution der PE-Banden im Bereich 7–10 eV, eine fundierte Zuordnung zu den von A₊, A₋, S₊ und S₋ (vgl. Schema 7) dominierten Molekülorbitalen nicht möglich ist. Wie bereits eingangs erwähnt, helfen hier auch Modell-Rechnungen nicht wesentlich weiter. So liefert beispielsweise das MINDO/3-Verfahren [28] die Sequenz A₋(a₁), A₊(b₂), S₋(b₁), S₊(a₂), wobei die entsprechenden Orbital-Energien alle in ein enges Ionisierungsenergie-Intervall von 0,8 eV (**13b**) bzw. 0,6 eV (**13c**) fallen. Im Gegensatz dazu vertauscht das für Cyclophane mit Erfolg verwendete Modell [35] [37] [39] die Orbital-Reihenfolge von S₋(b₁) und S₊(a₂).

Die in *Fig.6* angegebene, partielle Zuordnung ist demzufolge keineswegs gesichert und es ist somit auch nicht möglich, über das Ausmass der relativen 'through-space'- und 'through-bond'-Beiträge zur Orbital-Energie der vier obersten Molekülorbitale in den Molekülen **13b** und **13c** etwas Verbindliches auszusagen.

Der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der BASF AG danken wir für die Unterstützung dieser Arbeit. Diese Arbeit ist Teil Nr. 169 des Projekts 2.429-0.84 des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Teil 168 [42]). Wir danken den Firmen Ciba-Geigy AG, F. Hoffmann-La Roche & Co. AG und Sandoz AG für Unterstützung.

Experimenteller Teil

Allgemeines. HPLC: LiChrosorb-RP-18. Säulenchromatographie: Macherey-Nagel-MN-Kieselgel 60. PE = Petrolether. Schmp: Büchi 520, nicht korrigiert. UV: Zeiss DMR 21. IR: Perkin-Elmer 457. ¹H-NMR: Varian EM 390, Bruker WM 250/HX 360; mit * gekennzeichnete Zuordnungen sind wechselseitig vertauschbar. ¹³C-NMR: Bruker WP 80/WM 250.

4,5,6,7-Tetrachlorpentacyclo[7.5.0.0^{2,13}.0^{3,8}.0^{10,14}] tetradeca-4,6,11-trien (**6a**). Zu einer eisgekühlten Lsg. von 0,80 g (6,1 mmol) **1a** in 5 ml CCl₄, durch die ein schwacher N₂-Strom perlt, wird innerhalb von 45 min eine Lsg. von 1,50 g (5,9 mmol) **5** in 12 ml CCl₄ getropft (SO₂-Entwicklung). Man lässt die gerührte Mischung langsam auf RT. erwärmen, destilliert das Lsgm. nach beendetem Umsatz (1 h, ¹H-NMR) über eine kurze Vigreux-Kolonne weitgehend ab und chromatographiert den öligen Rückstand an Kieselgel (CCl₄/PE 1:1). Nach Abtrennung von überschüssigem **1a** und Kristallisation aus Hexan 1,61 g (85%) farblose Nadeln. Schmp. 154–155°. IR (KBr): 3035, 2965, 2870, 1610, 1335, 1285, 1215, 1205, 1075, 890, 840, 825, 775, 760, 750, 700, 670, 585, 500. ¹H-NMR (250 MHz, CDCl₃): 6,46 (*m*, H-C(11,12)); 3,64 (*m*, H-C(2,9)); 3,52 (*m*, H-C(10,13)); 3,02 (*m*, H-C(14*)); 2,98 (*s*, H-C(3,8)); 2,86 (*m*, H-C(1*)). Anal. ber. für C₁₄H₁₀Cl₄ (320,05): C 52,54, H 3,15, Cl 44,31; gef.: C 52,56, H 3,08, Cl 44,36.

5,6,7,8,13,14,15,16-Octachlorhexacyclo $[9.7.0.0^{2,10}.0^{3,18}.0^{4.9}.0^{12,17}]$ octadeca-5,7,13,15-tetraen (**10a**). Eine eisgekühlte Lsg. von 0,38 g (2,9 mmol) **1a** in 5 ml CCl₄ wird unter N₂ mit 1,60 g (6,3 mmol) **5** in 13 ml CCl₄ versetzt (SO₂-Entwicklung). Nach 30 min lässt man auf RT. erwärmen, worauf sich alsbald ein feinkristalliner Niederschlag abscheidet. Nach 16 h wird in der Kälte abgesaugt und aus CHCl₃ umkristallisiert: 1,42 g (95%) farblose Nadeln, Schmp. > 300°. IR (KBr): 2990, 2975, 2880, 1615, 1335, 1215, 1110, 1085, 1035, 825, 800, 745, 700, 600. ¹H-NMR (CDCl₃, 250 MHz): 3,60 (*m*, H–C(3,10,11,18)); 3,42 (*s*, H–C(4,9,12,17)); 3,01 (*m*, H–C(1,2)). Anal. ber. für C₁₈H₁₀Cl₈ (509,90): C 42,40, H 1,98, Cl 55,62; gef.: C 42,28, H 2,03, Cl 55,71.

(5-8), 13, 14, 15, 16-Heptachlorhexacyclo[$9.7.0.0^{2.10}.0^{3.18}.0^{4.9}.0^{12.17}$]octadeca-4, 6.8, 13, 15-pentaen⁷) (11a). Eine Suspension von 100 mg (0,2 mmol) pulverisiertem 10a in 1 l EtOH unter Rückfluss wird mit einer heissen Lsg. von 4,0 g KOH in 100 ml EtOH versetzt. Nach 20 min giesst man auf 1 kg zerstossenes Eis, extrahiert mit CH₂Cl₂, trocknet (MgSO₄) die vereinigten Extrakte und dampft ein. Kristallisation aus CH₂Cl₂/EtOH ergibt 72 mg (78%) feine, farblose Kristalle, Schmp. 221–222°. IR (KBr): 2975, 1610, 1550, 1420, 1330, 1240, 1195, 1125, 1080, 850, 825, 755, 710, 685, 550. ¹H-NMR (250 MHz, CDCl₃): 7,31 (s, H–C(5–8)); 4,26 (m, H–C(3,10)); 3,90 (m, H–C(11,18)); 3,33 (m, H–C(2⁺)); 3,20 (m, H–C(1⁺)); 2,62 (s, H–C(12,17)). Anal. ber. für C₁₈H₉Cl₇ (473,44): C 45,67, H 1,92, Cl 52,42; gef.: C 45,61 H 1,74, Cl 52,40.

(5-8), (13-16)-Hexachlorhexacyclo $[9.7.0, {}^{2,10}0^{3.18}, 0^{4.9}, 0^{12,17}]$ octadeca-4.6, 8, 12, 14, 16-hexaen (Isomerengemisch, **12a**). Eine Mischung von 2,00 g (3,9 mmol) pulverisiertem **11a** und 15 g KOH in 21 EtOH wird unter Rühren 17 h zum Rückfluss erhitzt. Nach Einengen auf *ca*. 50 ml wird mit 200 ml H₂O verdünnt und mit CH₂Cl₂ extrahiert. Nach Trocknen (MgSO₄) und Eindampfen der Extrakte verbleibt ein beige-brauner, fester Rückstand; aus EtOH, 1,59 g (93%) farblose Nadeln (Rosetten). Schmp. 181–194°. IR (KBr): 3065, 2975, 1575, 1550, 1420, 1380, 1240, 1200, 1170, 1140, 860, 830, 760, 735, 700, 560. ¹H-NMR (250 MHz, CDCl₃): 7,05 (*s*, H–C(5–8),(13–16)); 4,43 (*m*, H–C(3,10,11,18)); 3,64 (*m*, H–C(1,2)). Anal. ber. für C₁₈H₈Cl₆ (436,98): C 49,48, H 1,85, Cl 48,68; gef.: C 49,32, H 1,93, Cl 48,57.

1,13,14,15-Tetrachlorhexacyclo[*11.2.1.0^{2,12}.0^{3,7}.0^{4,11}.0^{6,10}*]*hexadeca-8,14-dien-16-on-dimethyl-acetal* (**15b**). Zur siedenden Lsg. von 1,00 g (6,9 mmol) **1b** in 5 ml Toluol gibt man unter N₂ portionsweise innerhalb 1¹/₂ h insgesamt 1,70 g (6,4 mmol) **14**. Nach Totalumsatz (5 h, ¹H-NMR-Kontrolle) wird eingedampft, der ölige Rückstand über Kieselgel (CCl₄) gereinigt und mit 5 ml warmem MeOH digeriert, worauf Kristallisation eintritt; 2,30 g (88 %) farblose Kristalle, Schmp. 114–115° (aus MeOH). IR (KBr): 3055, 3040, 2995, 2960, 2940, 2855, 2835, 1593, 1275, 1215, 1185, 1150, 1120, 985, 980, 813. ¹H-NMR (250 MHz, CDCl₃): 6,18 (*m*, H–C(8,9)); 3,57 (*s*, CH₃O); 3,52 (*s*, CH₃O); 2,78 (*m*, H–C(6)); 2,69 (*s*, H–C(2,12)); 2,52 (*m*, H–C(7,10)); 2,32 (*m*, H–C(4)); 2,19 (*dd*, H–C(3,11)); 1,48 (*m*, H–C(5)); *J*(3,7) = 9,3, *J*(3,4) = 4,0, *J*(2,3) = 0. Anal. ber. für C₁₈H₁₈Cl₄O₂ (408,15): C 52,97, H 4,45, Cl 34,75; gef.: C 53,13, H 4,46, Cl 34,53.

 $Hexacyclo[11.2.1.0^{2.12}.0^{3.7}.0^{4.11}.0^{6.10}]hexadeca-8,14-dien-16-on-dimethyl-acetal (16b). Die Lsg. von 2,10 g (5,1 mmol) 15b und 3,70 g (49,9 mmol) t-BuOH in 100 ml abs. THF erhitzt man zum Rückfluss (N₂) und fügt unter Rühren 1,40 g (60,9 mmol) fein geschnittenes Na-Metall zu. Nach 6 h dekantiert man von Na-Resten ab, hydrolysiert mit 300 ml Eis/H₂O und extrahiert mit CH₂Cl₂. Nach Trocknen (MgSO₄) wird die org. Phase eingedampft und das hellgelbe Öl über Kieselgel (CCl₄) filtriert: 1,18 g (85%) farbloses, viskoses Öl, das bis <math>-20^{\circ}$

⁷) Lokanten in Klammern bedeuten, dass die Lage der damit versehenen Cl-Substituenten nicht bestimmt wurde.

nicht kristallisiert und beim Stehen an der Luft langsam zu **17b** hydrolisiert. IR (Film): 3045, 2925, 2850, 2815, 1305, 1262, 1197, 1132, 1105, 1075, 1048, 840, 765, 730, 707. ¹H-NMR (250 MHz, CDCl₃): 6,17 (m, H–C(8,9)); 6,12 (m, H–C(14,15)); 3,18 (s, CH₃O); 3,08 (s, CH₃O); 2,93 (m, H–C(6)); 2,78 (m, H–C(1,13)); 2,66 (m, H–C(4)); 2,47 (m, H–C(2,12)); 2,39 (m, H–C(7,10)); 1,91 (dd, H–C(3,11)); 1,33 (m, H–C(5)). Anal. ber. für C₁₈H₂₂O₂ (270,37): C 79,96, H 8,20; gef.: C 80,12, H 8,04.

Hexacyclo[*11.2.1.0*^{2,12}.0^{3,7}.0^{4,11}.0^{6,10}]*hexadeca-8,14-dien-16-on* (**17b**). Die Lsg. von 1,00 g (3,7 mmol) **16b** in 100 ml CH₂Cl₂ wird mit 50 ml 30% H₂SO₄ im offenen Gefäss bei RT. so kräftig gerührt, dass eine Emulsion entsteht. Verdampftes Lsgm. wird bei Bedarf ersetzt. Nach 24 h wird mit 300 ml Eis/H₂O verdünnt und die wässr. Phase mit CH₂Cl₂ extrahiert. Ausschütteln mit ges. NaHCO₃-Lsg., Trocknen (MgSO₄), Filtrieren über Kieselgel (CCl₄/CH₂Cl₂ 1:1) und Eindampfen ergeben 830 mg (92%) farblose Kristalle, Schmp. 127° (Zers.). IR (KBr): 3045, 2990, 2940, 2910, 2860, 1800, 1760, 1340, 1305, 1272, 1162, 1090, 847, 832, 765, 728, 712, 605, 517. ¹H-NMR (250 MHz, CDCl₃): 6,05 (*m*, H–C(14,15)); 5,87 (*m*, H–C(8,9)); 2,80 (*m*, H–C(1,13)); 2,60 (*m*, H–C(6)); 2,48 (*m*, H–C(4)); 2,15–2,27 (*m*, H–C(2,7,10,12)); 1,73 (*dd*, H–C(3,11)); 1,22 (*m*, H–C(5)). Anal. ber. für C₁₆H₁₆O (224,30): C 85,68 H 7,19; gef.: C 85,40, H 7,18.

Pentacyclo[7.6.0^{2.13}.0^{3,8}.0^{10,14}]*pentadeca-4,6,11-trien* (**18b**). Die Lsg. von 500 mg (2,2 mmol) **17b** in 10 ml Toluol wird 4 h zum Rückfluss gekocht. Nach Eindampfen wird der bräunliche, ölige Rückstand zur Abtrennung von polymeren Anteilen mit Hexan über Kieselgel filtriert. Aus Hexan/EtOH 20:1 410 mg (94%) farblose Kristalle, Schmp. 50–51°. UV (Isooctan): 243 (sh, 370), 252 (600), 259 (800), 269 (790), 280 (410). IR (KBr): 3050, 3020, 2995, 2965, 2930, 2875, 2860, 1585, 1333, 842, 765, 715, 625. ¹H-NMR (250 MHz, CDCl₃): 6,12 (*m*, H–C(11,12)); 5,68 (*m*, H–C(5,6)); 5,52 (*m*, H–C(4,7)); 2,75 (*m*, H–C(14)); 2,52–2,39 (*m*, H–C(3,8,10,13)); 2,32 (*m*, H–C(1)); 2,05 (*dd*, H–C(2,9)); 1,46 (*m*, H–C(15)). Anal. ber. für $C_{15}H_{16}$ (196,29): C 91,78, H 8,22; gef.: C 91,53, H 8,05.

Pentacyclo[7.6.0.0^{2,13}.0^{3,8}.0^{10,14}] *pentadeca-3,5,7,11-tetraen* (**8b**). Ein innig verriebenes Gemisch von 300 mg (1,5 mmol) **18b** und 3,00 g 10% Pd/C (*Engelhard*) wird in einer Glas-Ampulle 30 min auf 160° erhitzt. Der Ampulleninhalt wird 3mal mit 50 ml Hexan unter Aufkochen extrahiert. Nach Filtration und Eindampfen verbleibt ein klares, farbloses Öl (230 mg, 77%), das durch präp. DC (Kieselgel, Hexan) getrennt wird: 20 mg (7%) **9b**, $R_{\rm f}$ 0.4, und 190 mg (64%) **8b**, $R_{\rm f}$ 0.25, beide als farblose Öle. UV (Isooctan): 277 (1295), 270 (1245), 263 (820), 257 (sh, 380). IR (Film): 3050, 3040, 3010, 2935, 2855, 1465, 1455, 1332, 1268, 1170, 840, 760, 735, 703. ¹H-NMR (250 MHz, CDCl₃): 7,05–6,97 (*AA'BB'*, arom.H); 5,52 (*m*, H–C(11,12)); 3,37 (*m*, H–C(1)); 3,19 (*m*, H–C(14)); 2,97 (*dd*, H–C(2,9)); 2,61 (*m*, H–C(10,13)); 1,79 (*m*, H–C(15)). Anal. ber. für C₁₅H₁₄ (194,28): C 92,74, H 7,26; gef.: C 92,58, H 7,13.

Pentacyclo[7.6.0.0^{2,13}.0^{3,8}.0^{10,14}] pentadeca-3,5,7-trien (9b). a) Isomerisierung von 18b. Eine Lsg. von 100 mg (0,5 mmol) 18b in 5 ml Ph₂O wird 2 h auf 220° erhitzt. Nach Eindampfen wird an Kieselgel (Hexan) chromatographiert: 85 mg (85%) farbloses Öl.

b) *Hydrierung von* **8b**. Eine Lsg. von 90 mg (0,5 mmol) **8b** in 10 ml AcOEt wird über Pd/C hydriert. Nach Filtration und Eindampfen 90 mg öliges Produkt, das einer Kurzwegdestillation unterworfen wird ($80^{\circ}/0.2$ Torr). UV (Isooctan): 225 (sh, 3550), 232 (1500), 250 (sh, 190), 257 (sh, 410), 263 (750), 270 (1230), 277 (1380). IR (Film): 3060, 3035, 3010, 2935, 2855, 1465, 1452, 748, 725. ¹H-NMR (250 MHz, CDCl₃): 7,10 – 7,00 (*AA'BB'*, arom. H); 3,08 (*m*, H–C(1)); 2,97 (*dd*, H–C(2,9)); 2,48 (*m*, H–C(14)); 2,31 (*m*, H–C(10,13)); 1,72 (*m*, H–C(15)); 1,49 (*m*, H_{'exo}–C(11,12)); 0,92 (*m*, H_{'endo}–C(11,12)). Anal. ber. für C₁₅H₁₆ (196,29): C 91,78, H 8,22; gef.: C 91,49, H 8,40.

4,5,6,7-Tetrachlorpentacyclo[7.6.0. $0^{2,13}$. $0^{3,8}$. $0^{10,14}$]pentadeca-3,5,7-trien (i). Eine Lsg. von 65 mg (0,2 mmol) 6b in 25 ml o-Dichlorbenzol wird 24 h zum Rückfluss erhitzt. Nach Eindampfen wird über 5 g Kieselgel (CCl₄) filtriert: 50 mg (77%) farblose Kristalle, Schmp. 173–174° (aus CH₂Cl₂/EtOH). IR (KBr): 2945, 2860, 1385, 1365, 1315, 1295, 1235, 1160, 850. ¹H-NMR (250 MHz, CDCl₃): 3,26 (*m*, H–C(2,9)); 3,11 (*m*, H–C(1)); 2,57 (*m*, H–C(14)); 2,49 (*m*, H–C(10,13)); 1,74 (br. *s*, H–C(15)); 1,63 (*m*, H_{'ex0}–C(11,12)); 0,88 (*m*, H_{'end0}–C(11,12)). Anal. ber. für C₁₅H₁₂Cl₄ (334,07): C 53,93, H 3,62, Cl 42,45; gef.: C 53,95, H 3,47, Cl 42,41.

1,6,7,8,9,17,18,19-Octachloroctacylo[15.2.1. $^{6.9}$.0^{2,16}.0^{3,14}.0^{4,12}.0^{5,10}.0^{11,15}]henicosa-7,18-dien-20,21-dion-bis-(dimethyl-acetal) (**20b**). Eine Lsg. von 2,00 g (13,9 mmol) 1b und 8,10 g (30,7 mmol) 14 in 15 ml Xylol (N₂) wird 72 h zum Rückfluss erhitzt. Nach Abfiltrieren der beim Abkühlen abgeschiedenen groben Kristalle wird die Xylol-Lsg. weitgehend eingedampft und mit MeOH versetzt, worauf in der Kälte weiteres Pr⁻¹ ukt auskristallisiert, insgesamt 7,96 g (85%) farblose Kristalle. Schmp. 284–285° (aus MeOH). IR (KBr): 3010. 2980, 2970, 2935, 2910, 2860, 2830, 1590, 1440, 1355, 1305, 1275, 1255, 1240, 1190, 1145, 1120, 1100, 1055, 1030, 020, 980, 970, 915, 900, 825, 795, 700, 625. ¹H-NMR (250 MHz, CDCl₃): 3,68 (s, 2 CH₃O); 3,55 (s, 2 CH₃O); 3,04 (br. s, H–C(2,5,10,16)); 2,15 (m, H–C(12,14)); 2,12 (m, H–C(3,4,11,15)); 1,42 (br. s, H–C(13)). Anal. ber. für C₂₅H₂₄Cl₈O₄ (672,09): C 44,68, H 3,60, Cl 42,20; gef.: C 44,50, H 3,45, Cl 42,21. $Octacyclo[15.2.1.1^{6.9}.0^{2.16}.0^{3.14}.0^{4.12}.0^{5.10}.0^{11.15}]henicosa-7,18-dien-20,21-dion-bis(dimethyl-acetal) (21b).$ Zur Lsg. von 6,35 g (9,5 mmol) **20b** und 11,50 g (0,16 mol) t-BuOH in 200 ml abs. THF unter Rückfluss gibt man innerhalb 1 h portionsweise 5,50 g (0,24 mol) fein geschnittenes Na-Metall. Nach beendeter Zugabe werden nochmals 11,50 g t-BuOH und 5,50 g Na zugegeben. Nach 16 h dekantiert man von Na-Resten ab und hydrolysiert mit 0,5 1 H₂O. Man extrahiert mit CH₂Cl₂, trocknet (MgSO₄) und dampft ein. Das gelbe Öl wird an Kieselgel (CCl₄) chromatographiert und aus MeOH kristallisiert: 3,10 g (82%) farblose Kristalle, Schmp. 132°. IR (KBr): 3040, 3010, 2980, 2960, 2930, 2910, 2890, 2820, 1310, 1305, 1275, 1270, 1260, 1200, 1135, 1100, 1075, 1045, 1015, 915, 840, 730, 595. ¹H-NMR (250 MHz, CDCl₃): 6,06 (*m*, H–C(7,8,18,19)); 3,24 (*s*, 2 CH₃O); 3,07 (*s*, 2 CH₃O); 2,94 (*m*, H–C(2,5,10,16)); 2,73 (*m*, H–C(1,6,9,17)); 2,64 (*m*, H–C(12,14)); 1,71 (*m*, H–C(3,4,11,15)); 1,05 (*m*, H–C(13)). Anal. ber. für C₂₅H₃₂O₄ (396,53): C 75,73, H 8,14; gef.: C 75,63, H 7,98.

 $\begin{array}{l} Octacyclo[\,15.2.1.1^{6.9}.0^{2.16}.0^{3.14}.0^{4.12}.0^{5.10}.0^{11.15}]henicosa-7,18-dien-20,21-dion (22b). Die Lsg. von 5,00 g (12,6 mmol)$ **21b** $in 500 ml CH_2Cl_2 wird mit 250 ml 30 % H_2SO₄ im offenen Gefäss bei RT. so intensiv gerührt, dass eine Emulsion entsteht. Verdampftes Lsgm. wird bei Bedarf ersetzt. Nach 24 h trennt man die CH_2Cl_2-Phase ab, extrahicrt die wässr. Phase mit CH_2Cl_2, neutralisiert (ges. NaHCO_3-Lsg.), trocknet (MgSO₄) die Extrakte und dampft ein. Aus CCl₄, 3,43 g (89 %) farblose Kristalle, Schmp. 153° (Zers.). IR (KBr): 3020, 3000, 2980, 2940, 2915, 2855, 1795, 1760, 1305, 1165, 1130, 1085, 915, 840, 725, 610. ¹H-NMR (90 MHz, CDCl_3): 6,43 (m, H-C(7,8,18,19)); 2,92 (m, H-C(2,5,10,16)); 2,83 (m, H-C(1,6,9,17)); 2,47 (m, H-C(12,14)); 1,98 (m, H-C(3,4,11,15)); 1,17 (m, H-C(13)). Anal. ber. für C₂₁H₂₀O₂ (304,39): C 82,86, H 6,62; gef.: C 82,01, H 6,43. \end{array}$

Hexacyclo[10.7.0.0^{2,10}.0^{3,8}.0^{9,13}.0^{14,19}]*nonadeca-4,6,15,17-tetraen* (**23b**). Die Lsg. von 2,40 g (1,3 mmol) **22b** in 60 ml Toluol wird bis zum Totalumsatz zum Rückfluss erhitzt (*ca.* 4 h; DC (CCl₄)). Nach Eindampfen chromatographiert man das braune Öl an Kieselgel (CCl₄). Aus MeOH, 1,68 g (87%) farblose Kristalle, Schmp. 107–109°. UV (CH₃CN): 243 (sh, 3160), 253 (4700), 261 (5300), 270 (4050), 281 (1980). IR (KBr): 3050, 3020, 2995, 2950, 2930, 2900 (sh), 2860, 1585, 1450, 1410, 1365, 1290, 790, 680, 625. ¹H-NMR (90 MHz, CCl₄): 5,56 (*AA'* von *AA'BB'*, H–C(5,6,16,17)); 5,30 (*BB'* von *AA'BB'*, H–C(4,7,15,18)); 2,77 (*m*, H–C(3,8,14,19)); 2,33 (*m*, H–C(10,12)); 1,90 (*m*, H–C(1,2,9,13)); 1,43 (*m*, H–C(11)). Anal. ber. für C₁₉H₂₀ (248,37): C 91,88. H 8,12; gef.: C 91,75, H 7,98.

1.6.7.8.9.17.18.19-Octachloroctacyclo[$15.2.1.1^{6.9}.0^{2.16}.0^{3.14}.0^{4.12}.0^{5.10}.0^{11.15}$]henicosa-7.18- dien-20.21- dion (19b). Die Lsg. von 1,00 g (1,5 mmol) **20b** in 20 ml CH₂Cl₂ wird mit 10 ml konz. H₂SO₄ bei RT. so intensiv gerührt, dass eine Emulsion entsteht. Nach 3 d giesst man vorsichtig in 200 ml H₂O und extrahiert mit CH₂Cl₂. Nach Eindampfen wird der feste Rückstand aus CCl₄ umkristallisiert: 695 mg (81%) farbloses, kristallines Pulver, Schmp. *ca.* 200° (Zers. zu **10b**). IR (KBr): 3005, 2930, 2860, 2840, 1820, 1570, 1305, 1280, 1255, 1235, 1170, 1015, 910, 780, 695, 515. ¹H-NMR (90 MHz, CDCl₃): 2,79 (*s*, H–C(2,5,10,16)); 2,39 (*m*, H–C(3,4,11,15)); 2,28 (*m*, H–C(12,14)); 1,58 (*m*, H–C(13)). Anal. ber. für C₂₁H₁₂Cl₈O₂ (579,95): C 43,49, H 2,09, Cl 48,91; gef.: C 43,45, H 1,75, Cl 49,18.

4,5,6,7-*Tetrachlorpentacyclo*[7,6,0.0^{2,13}.0^{3,8}.0^{10,14}]*pentadeca*-4,6,11-*trien* (**6b**). Eine Lsg. von 1,20 g (8.3 mmol) **1b** und 1,90 g (7,5 mmol) **5** in 10 ml 1,2-Dichlorethan wird unter N₂ bis zum Abklingen der exothermen Reaktion bei 0° gerührt (30 min, SO₂-Entwicklung) und dann 2 h zum Rückfluss erhitzt. Man dampft ein und entfernt überschüssiges **1b** aus dem festen Rückstand durch wiederholte Extraktion mit wenig kaltem Hexan. Aus CCl₄, 2,40 g (96%) grobe, farblose Kristalle, Schmp. 143–144°. UV (Isooctan): 225 (4200), 240 (2850), 247 (sh, 2450), 262 (sh, 2600), 272 (4050), 283 (5850), 295 (6600), 307 (4050). IR (KBr): 3060, 2955, 2935, 2895, 2865, 1610, 1340, 1335, 1215, 847, 820, 808, 790, 770, 712, 555. ¹H-NMR (250 MHz, CDCl₃): 5,96 (*m*, H–C(11,12)); 2,69 (*m*, H–C(14)); 2,57 (*s*, H–C(3,8)); 2,52 (*dd*, H–C(2,9)); 2,35 (*m*, H–C(10,13)); 2,20 (*m*, H–C(1)); 1,28 (*m*, H–C(15)). *J*(1,2) = 4,5, *J*(1,9) \approx 0, *J*(2,13) = 9,7. Anal. ber. für C₁₅H₁₂Cl₄ (334,07): C 53,93, H 3,62, Cl 42,45; gef.: C 53,77, H 3,47, Cl 42,39.

(4-7)-Trichlorpentacyclo[7,6,0.0^{2,13}.0^{3,8}.0^{10,14}]pentadeca-3,5,7,11-tetraen⁷) (**7b**). Eine Lsg. von 1,60 g (4,6 mmol) **6b** und 2,60 g (46 mmol) KOH in 200 ml EtOH wird bis zum Totalumsatz (36 h; DC (CCl₄)) zum Rückfluss erhizt. Man engt auf 20 ml ein, verdünnt mit 200 ml H₂O und extrahiert mit CH₂Cl₂. Die Extrakte werden mit H₂O gewaschen, getrocknet (MgSO₄) und eingedampft. Der rotbraune, ölige Rückstand (1,20 g) besteht laut ¹H-NMR aus *ca*. 60% **7b** und mehreren olef./arom. Nebenprodukten, die durch präp. HPLC (100% MeOH) abgetrennt werden. Polymerisationsanfälliges, farbloses Öl. UV (Isooctan): 274 (sh, 280), 282 (410), 291 (370), 310 (sh, 15). IR (Film): 3050, 2950, 2860, 1415, 1275, 1188, 1135, 940, 840, 762, 708, 685. ¹H-NMR (250 MHz, C₆D₆): 6,99 (*s*, arom. H); 5,47 (*dd*, H–C(12)); 5,41 (*dd*, H–C(11)); 3,01 – 2,72 (*m*, H–C(1,2,9,14)); 2,23 (*m*, H–C(10,13)); 1,31 (*m*, H–C(15)); *J*(12,13) = 3,0, *J*(9,10) = 5,5. Anal. ber. für C₁₅H₁₁Cl₃ (267,61): C 60,54, H 3,73, Cl 35,74; gef.: C 60,31, H 3,66, Cl 35,59.

4,5,6,7,15,16,17,18-Octachlorhexacyclo[10.7.0.0^{2,10},0^{3,8},0^{9,13},0^{14,19}]nonadeca-4,6,15,17-tetraen (10b). a) Addition von 5 an 1b. Zur Lsg. von 1,00 g (6,9 mmol) 1b in 20 ml 1,2-Dichlorethan gibt man bei 0° 3,70 g (14,6 mmol)

1835

5. Nach 30 min Rühren unter N₂ erwärmt man zum Rückfluss, wobei sich aus der gerührten Lsg. ein feines Kristallpulver abscheidet, das nach 3 h in der Kälte abgesaugt und mit kaltem CCl₄ gewaschen wird. Aus der Mutterlauge wird eine weitere Fraktion erhalten, insgesamt 3,50 g (96%). Schmp. 260°.

b) *Decarbonylierung von* **19b.** Man kocht die Lsg. von 580 mg (1,0 mmol) **19b** in 25 ml Xylol, bis die CO-Entwicklung beendet ist (4 h). Nach Eindampfen wird der hellbraune, feste Rückstand (510 mg, 97%) aus CHCl₃ umkristallisiert. UV (CH₃CN): 217 (sh, 5800), 252 (sh, 3650), 263 (sh, 6160), 273 (8930), 283 (11270), 294 (10170), 308 (5400). IR (KBr): 2960, 2945, 2925, 2910, 2890, 2875, 2855, 1615, 1340, 1285, 1225, 1210, 1205, 1110, 1080, 1035, 1025, 840, 800, 750, 700, 635, 585, 565. ¹H-NMR (90 MHz, CDCl₃): 3,13 (*s*, H–C(3,8,14,19)); 2,70 (*m*, H–C(1,2,9,13)); 2,55 (*m*, H–C(10,12)); 1,57 (*m*, H–C(11)). Anal. ber. für $C_{19}H_{12}Cl_8$ (523,93): C 43,56, H 2,31, Cl 54,14; gef.: C 43,21, H 2,02, Cl 54,15.

(4-7), 15, 16, 17, 18-Heptachlorhexacyclo[10.7.0.0^{2,10}, 0^{3,8}, 0^{9,13}, 0^{14,19}] nonadeca-3, 5, 7, 15, 17-pentaen⁷) (11b). Die Lsg. von 240 mg (0,5 mmol) 10b in 100 ml siedendem EtOH wird mit einer Lsg. von 250 mg (4,5 mmol) KOH in 10 ml EtOH versetzt und 30 min gekocht. Man dampft ein, nimmt in 50 ml H₂O auf und extrahiert mit CH₂Cl₂. Nach Trocknen (MgSO₄) und Eindampfen (210 mg, 94%) wird eine anal. Probe durch präp. HPLC (100% MeOH) als farblose Rauten erhalten. Schmp. 199–200°. UV (Isooctan): 230 (sh, 1300), 264 (sh, 450), 274 (750), 285 (1100), 297 (1200), 310 (720). IR (KBr): 2950, 2870, 2840, 1615, 1425, 1415, 1205, 1140, 855, 762, 715, 680. ¹H-NMR (250 MHz, CDCl₁): 7,25 (s, arom. H); 3,43 (m, H–C(2,9)); 3,25 (m, H–C(10)); 2,97 (m, H–C(1,13)); 2,77 (m, H–C(12)); 2,36 (s, H–C(14,19)); 1,77 (m, H–C(11)). Anal. ber. für C₁₉H₁₁Cl₇(487,47): C 46,81, H 2,27, Cl 50,91; gef.: C 46,63, H 2,16, Cl 50,67.

(4-7),(15-18)-Hexachlorhexacyclo $[10.7.0.0^{2}, 10.0^{3,8}, 0^{9}, 13.0^{14}, 19]$ nonadeca-3,5,7,14,16,18-hexaen⁷) (Isomerengemisch, **12b**). Eine Mischung aus 2,40 g (4,6 mmol) **10b** und 5,00 g (89 mmol) KOH in 11 EtOH wird 72 h unter Rückfluss gehalten. Man dampft die braune Lsg. auf 50 ml ein, verdünnt mit 200 ml H₂O und extrahiert erschöpfend mit CH₂Cl₂. Nach Trocknen (MgSO₄) wird eingedampft, der Rückstand über Kieselgel filtriert (CH₂Cl₂/CCl₄ 2:1): 1,51 g (73%) dicke, farblose Stäbchen, Schmp. 207–210^e. UV (Isooctan): 275 (sh, 380), 282 (540), 292 (470). IR (KBr): 2975, 2955, 2940, 2930, 2855, 1555, 1420, 1380, 1270, 1192, 1170, 1140, 1048, 930, 855, 835, 768, 742, 690. ¹H-NMR (250 MHz, C₆D₆): 6,65, 6,68 (2 s, arom. H); 3,09 (m, H–C(1,2,9,13)); 2,88 (m, H–C(10,12)); 1,29 (m, H–C(11)). Anal. ber. für C₁₉H₁₀Cl₆ (451,01): C 50,60, H 2,23, Cl 47,16; gef.: C 50,53, H 1,99, Cl 47,27.

 $\begin{aligned} & Hexacyclo [10.7.0.0^{2.10}.0^{3.8}.0^{9.13}.0^{14.19}] nonadeca - 3, 5, 7, 14, 16, 18 - hexaen \quad \textbf{(13b)} \quad und \quad Hexacyclo-[10.7.0.0^{2.10}.0^{3.8}.0^{9.13}.0^{14,19}] nonadeca - 3, 5, 7 - trien (24b). a) Dehydrierung von 23b. Ein innig verriebenes Gemisch von 1,40 g (5,7 mmol) 23b und 33,0 g 10% Pd/C (Engelhard) wird in einer Glas-Ampulle 30 min auf 200° erhitzt. Nach Abkühlen extrahiert man den Ampulleninhalt mit AcOEt, filtriert und zieht das Lsgm. ab. Der feste, hellgelbe Rückstand wird aus CH_2Cl_/EtOH umkristallisiert (farblose Kristalle von 13b); Chromatographie der Mutterlauge erbringt, neben einer weiteren Fraktion, 13b (insgesamt 900 mg, 65%) und 24b (140 mg, 10%; farblose Kristalle aus EtOH). \end{aligned}$

b) Dehalogenierung von 12b. Eine Lsg. von 800 mg (1,8 mmol) 12b (Isomerengemisch) und 2,00 g (27,0 mmol) t-BuOH in 50 ml abs. THF wird unter N₂ zum Rückfluss erhitzt. Zur gerührten Lsg. gibt man innerhalb 1 h portionsweise 750 mg (32,6 mol) fein geschnittenes Na. Nach 6 h dekantiert man von Na-Resten, verdünnt mit 200 ml Eis/H₂O, extrahiert mit PE (30–50°), trocknet die Extrakte (MgSO₄) und dampft ein. Der blassgelbe, feste Rückstand wird aus EtOH kristallisiert: 370 mg (85%) farblose Blättchen. Die Einkristalle für die Röntgenstrukturanalyse werden aus EtOH/Et₂O 1:1 durch langsames Verdunsten des Lsgm. erhalten. 13b: Schmp. 157–158°. UV (CH₃CN): 256 (sh, 720), 264 (sh, 1300), 270 (1880), 277 (1830), 300 (40). IR (KBr): 3010, 2940, 2860, 1465, 1455, 1265, 765, 740, 530. ¹H-NMR (250 MHz, CDCl₃): 6,80–6.70 (*AA'BB'*, arom. H); 3,47 (*m*, H–C(10,12)); 3,19 (*m*, H–C(12,9,13)); 1,95 (*m*, H–C(11)). ¹³C-NMR (62.8 MHz, CDCl₃): 148,6 (*s*, C(3,8,14,19)); 125,4 (*d*, C(5,6,16,17)), 123.8 (*d*, C(4,7,15,18)); 62,4 (*d*, C(10,12)); 51.2 (*d*, C(1,2,9,13)); 34,3 (*t*, C(11)). Anal. ber. für C₁₉H₁₆ (244,34): C 93,40, H 6,60; gef.: C 93,26, H 6,58.

24b: Schmp. 147–148°. IR (KBr): 3060, 3035, 3010, 2930, 2850, 1465, 1450, 1010, 760, 735, 525. ¹H-NMR (CDCl₃, 250 MHz): 7,13–7,00 (*m*, arom. H); 3,07 (*m*, H–C(10)); 2,96 (*m*, H–C(2,9)); 2,71 (*m*, H–C(12)); 1,93 (*m*, H–C(1,13)); 1,66 (*m*, H–C(11)); 1,45 (*m*, H–C(14,19)); 1,35–0,96 (*m*, H–C(15,16,17,18)). Anal. ber. für C₁₉H₂₂ (250,39): C 91,14, H 8,86; gef.: C 91,09, H 8,97.

1,8,9,10,11,18,19,20-Octachloroctacyclo[$16.2.1.1^{8.11}.0^{2.17}.0^{3.6}.0^{4.16}.0^{5.13}.0^{7.12}$]docosa-9,19-dien-21,22-dionbis(dimethyl-acetal) (4c). Ein Gemisch von 1,20 g (7,6 mmol) 1c und 4,50 g (17,0 mmol) 14 wird in 15 ml Xylol 12 h unter N₂ zum Rückfluss erhitzt. Nach Eindampfen versetzt man mit 20 ml MeOH, wobei in der Kälte farblose Kristalle ausfallen. Nach Umkristallisieren aus CCl₄, 1,58 g (30%) 4c. Schmp. 272–273°. IR (KBr): 2980, 2940, 2910, 2840, 1600, 1450, 1440, 1430, 1270, 1260, 1250, 1205, 1185, 1165, 1155, 1145, 1130, 1105, 1090, 1050, 1030, 1015, 990, 975, 930, 910, 885, 850, 830, 795, 775, 755, 660, 600. ¹H-NMR (360 MHz, CDCl₃): 3,63 (s, 2 CH₃O); 3,51 (s, 2 CH₃O); 3,09 (d, H–C(2,7)); 3,03 (dd, H–C(12,17)); 2,81 (m, H–C(3,6)); 2,57 (m, H–C(4,5)); 2,19 (m, H–C(13,16)); 1,60, 1,36 (2 m, H–C(14,15)); J(2,3) = 0,0, J(2,17) = 9,0, J(12,13) = 3.0. Anal. ber. für C₂₆H₂₆Cl₈O₄ (686,12): C 45,51, H 3,82, Cl 41,34; gef.: C 45,42, H 3,78, Cl 41,38.

4,5,6,7-*Tetrachlorpentacyclo*[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]*hexadeca-4,6,11-trien* (6c). Die Lsg. von 2,30 g (14,5 mmol) 1c in 5 ml CCl₄ wird auf 60° erhitzt und innerhalb von 1 h portionsweise mit einer Lsg. von 3,00 g (11,8 mmol) 5 in 25 ml CCl₄ versetzt. Nach 3 h wird eingedampft und überschüssiges 1c aus dem festen Rückstand durch wiederholte Extraktion mit wenig kaltem Hexan entfernt. Nach Kristallisieren aus CCl₄, 3,50 g (85%) grobe, farblose Kristalle. Schmp. 170-171°. UV (Isooctan): 226 (4300), 241 (3000), 249 (sh, 2550), 264 (sh, 2500), 274 (3900), 285 (5600), 297 (6200), 310 (3700). IR (KBr): 2940, 2930, 2920, 2895, 2880, 2855, 1610, 1335, 1217, 1210, 1090, 808, 790, 710, 672. ¹H-NMR (250 MHz, CDCl₃): 6,01 (*m*, H–C(11,12)); 2,47 (*s*, H–C(3,8)); 2,38 (*dd*, H–C(2,9)); 2,12 (*m*, H–C(10,13)); 1,69 (*m*, H–C(14)); 1,37 (*m*, H–C(1)); 1,31 (*m*, H–C(15,16)). Anal. ber. für C₁₆H₁₄Cl₄ (348,10): C 55,21, H 4,05, Cl 40,74; gef.: C 54,99, H 3,90, Cl 40,52.

Pentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]hexadeca-4,11-dien (**25**) und Pentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]hexadeca-5,11-dien (**26**). Die Lsg. von 3,10 g (8,9 mmol) **6c** und 6,70 g (90,4 mmol), t-BuOH in 100 ml abs. THF wird unter N₂ innerhalb 1 h mit 0,80 g (0,12 mol) Li-Granulat versetzt. Nach 12 h Kochen unter Rückfluss dekantiert man von Li-Resten ab und verdünnt mit 300 ml Eis/H₂O. Man extrahiert mit PE (30–50°), trocknet (MgSO₄) und dampft ein. Der blassgelbe, feste Rückstand wird an Kieselgel chromatographiert (PE (30–50°)): 1,71 g (90%) farbloses, kristallines **25/26** (*ca.* 2:1). Schmp. 68–73°. IR (KBr): 3050, 3030, 3010, 2915, 2845, 2825, 1452, 1440, 1330, 1257, 747, 735, 715, 680, 670, 655, 642, 615. ¹H-NMR (250 MHz, CDCl₃): 6,41–6,28 (*m*, 2 H); 5,88–5,77 (*m*) und 5,60 (*dt*, 2 H); 2,45–2,10 (*m*) und 2,00–1,60 (*m*, 16 H). Anal. ber. für C₁₆H₂₀ (212,33): C 90,51, H 9,49; gef.: C 90,35, H 9,69.

Pentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]hexadeca-4,6,11-trien (18c). Zur gerührten Lsg. von 1,00 g (2,9 mmol) 6c und 2,20 g (29,7 mmol) t-BuOH in 50 ml abs. Et₂O unter Rückfluss gibt man unter N₂ 0,80 g (34,8 mmol) feingeschnittenes Na. Nach 16 h rückfliessendem Erhitzen wird von Na-Resten abdekantiert und mit 300 ml Eis/H₂O hydrolysiert. Die PE-Extrakte werden mit H₂O, 2N HCl und ges. NaHC₃-Lsg. gewachsen, getrocknet (MgSO₄) und eingedampft. Der blassgelbe, halbfeste Rückstand wird mit PE (30–50°) an Kieselgel (3 × 20 cm) getrennt: 50 mg nicht näher analysiertes Olefin-Gemisch, dann 490 mg (81%; R_f 0,59) farbloses, kristallines 18c, das direkt weiter umgesetzt wird. ¹H-NMR (CDCl₃, 250 MHz): 6,37 (*m*, H–C(11,12)); 5,68 (*m*, H–C(6,5)); 5,56 (*m*, H–C(4,7)); 2,54 (*m*, H–C(3,8)); 2,45 (*m*, H–C(10,13)); 1,95 (*m*, H–C(2,9)); 1,82 (*m*, H–C(14)); 1,77–1,59 (*m*, H–C(15,16)); 1,51 (*m*, H–C(1)).

Pentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]*hexadeca-3,5,7,11-tetraen* (**8c**). Ein innig verriebenes Gemisch von 400 mg (1,9 mmol) **18c** und 4,0 g 10% Pd/C (*Engelhard*) wird in einer Glas-Ampulle 45 min auf 150° erhitzt. Der Ampulleninhalt wird in einem kleinen *Soxhlet*-Extraktor mit Hexan extrahiert, das Rohprodukt (380 mg, 95%) durch präp. DC (Kieselgel) mit PE (30–50°) aufgetrennt. Neben 100 mg **25** (25%; R_f 0,68) und 135 mg **9c** (34%; R_f 0,49) 110 mg **8c** (28%; R_f 0,38), jeweils aus Et₂O/EtOH.

8c: Schmp. 81–82°. IR (KBr): 3045, 3010, 2920, 2850, 1450, 1330, 1310, 1270, 1255, 1175, 1155, 935, 905, 785, 745, 730, 670, 535. ¹H-NMR (CDCl₃, 250 MHz): 6,98 (*m*, arom. H); 5.64 (*m*, H–C(11,12)); 2,85 (*m*, H–C(2,9)); 2,52 (*m*, H–C(1)); 2,45 (*m*, H–C(10,13)); 2,39 (*m*, H–C(14)); 1,93 (*m*, H–C(15,16)). Anal. ber. für C₁₆H₁₆ (208,30): C 92,26, H 7,74; gef.: C 91,98, H 7,83.

Pentacyclof 7.7.0. $0^{2,13}$, $0^{3.8}$, $0^{10,14}$ Jhexadeca-3,5,7-trien (9c). a) Isomerisierung von 18c. Eine Lsg. von 40 mg (0,2 mmol) 18c in 5 ml o-Dichlorbenzol wird 4 h zum Rückfluss erhitzt. Nach Eindampfen und Kristallisieren aus EtOH, 36 mg (90%) farblose Kristalle.

b) Dehydrierung von 25/26. Ein innig verriebenes Gemisch von 420 mg (2,0 mmol) 25/26 mit 4,2 g 10% Pd/C (Engelhard) wird in einer Glas-Ampulle 45 min auf 200° erhitzt. Der Ampulleninhalt wird 3mal durch Aufkochen mit 30 ml Hexan extrahiert. Nach Filtrieren wird das Lsgm. eingedampft und der farblose Rückstand aus EtOH kristallisiert: 310 mg (75%) farblose Blättchen. Schmp.93–94°. IR (KBr): 3050, 3010, 2950, 2915, 2900, 2895, 2850, 1455, 1450, 1438, 1318, 1152, 935, 781, 742, 538, 455. ¹H-NMR (250 MHz, CDCl₃): 7,10, 7,01 (*AA'BB'*, arom. H); 2,95 (*m*, H–C(2,9)); 2,23 (*m*, H–C(10,13)); 2,08 (*m*, H–C(1)); 1,85 (*m*, H–C(15,16)); 1,58 (*m*, H–C(14)); 1,33 (*m*, H_{cxw}–C(11,12)); 0,90 (*m*, H_{cendw}–C(11,12)). ¹³C-NMR (20,15 MHz, CDCl₃): 51,7 (*s*, C(3,8)); 124,5 (*d*, C(4,7)), 123,9 (*d*, C(5,6)), 46,9 (*d*, C(2,9)); 45,1 (*d*, C(1)); 40,6 (*d*, C(14)); 39,4 (*d*, C(10,13)); 29,4 (*t*, C(11,12)); 20,8 (*t*, C(16)); 20,1 (*t*, C(15)). Anal. ber. für C₁₆H₁₈ (210,32): C 91,37, H 8,63; gef.: C 91,26, H 8,57.

4.5.6.7-*Tetrachlorpentacyclo*[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]*hexadeca-3.5.7*-*trien* (11). Ein Gemisch von 80 mg (0,2 mmol) **6c** und 5 ml *o*-Dichlorbenzol wird 4 h zum Rückfluss erhitzt. Nach Eindampfen 75 mg (94%) farblose Kristalle, Schmp. 210 211° (aus CH₂Cl₂/EtOH). IR (KBr): 2965, 2925, 2890, 2875, 2855, 1465, 1450, 1380, 1365, 1320, 1310, 1285, 1220, 1150, 810, 735, 710, 700, 635, 625, 565, 495. ¹H-NMR (250 MHz, C₆D₆): 2,96 (*m*, H–C(2,9)); 1,97 (*m*, H–C(10,13)); 1,65 (*m*, H–C(1)); 1,39, 1,52 (2 *m*, H–C(15,16)); 1,20 (*m*, H_{exa}–C(11,12),

H-C(14); 0,67 (*m*, H_{iendo} -C(11,12)). Anal. ber. für $C_{16}H_{14}Cl_4$ (348,10): C 55,21, H 4,05, Cl 40,74; gef. : C 55,08, H 3,89, Cl 40,70.

10,11,12,13-Tetrachlorhexacyclo[$11.7.0.0^{2,10}.0^{3,8}.0^{9,14}.0^{15,20}$]icosa-3,5,7,11,15,17,19-heptaen (28). Ein Gemisch von 6,00 g (29,4 mmol) 27 und 8,00 g (13,5 mmol) 5 in 10 ml Xylol wird unter N₂ zum Rückfluss erhitzt. Nach anfänglich starker SO₂-Entwicklung scheiden sich glänzende Kristallblättchen ab, die man nach 8 h bei 0° absaugt und mit wenig CCl₄ wäscht. Aus der Mutterlauge lässt sich nach Einengen weiteres Produkt isolieren, insgesamt 8,45 g (73%) blassgelbe Blättchen. Schmp. 275° (aus CCl₄; [12]: 275–276°).

Hexacyclo[11.7.0.0^{2,10}.0^{3,8}.0^{9,14}.0^{15,20}]*icosa*-3,5,7,11,15,17,19-*heptaen* (**29**). Die Lsg. von 4,00 g (10,1 mmol) **28** und 9,00 g (0,12 mol) *t*-BuOH in 100 ml abs. THF wird zum Rückfluss erhitzt. Unter N₂ fügt man 1,00 g (0,15 mol) Li-Granulat zu. Nach 5 h Rühren unter Rückfluss wird von Li-Resten abdekantiert und mit 300 ml H₂O hydrolysiert. Nach Extraktion mit PE (30–50°) wird getrocknet (MgSO₄) und das Lsgm. abgedampft. Das verbleibende rötlichgelbe Öl wird zur Abtrennung von Polymeren über Kieselgel filtriert, dann aus Hexan kristallisiert: 1,09 g (42%) farblose Rauten. Schmp. 128°. UV (Isooctan): 259 (sh, 680), 265 (sh, 1020), 270 (1210), 278 (1140). IR (KBr): 3050, 3030, 3010, 2945, 2920, 1463, 1455, 1170, 732, 700, 682, 515, 495. ¹H-NMR (250 MHz, CDCl₃): 6,76–6,68 (*AA'BB'*, arom.H); 6,53 (*m*, H–C(11,12)); 3,43 (*m*, H–C(10,13)); 2,66 (*m*, H–C(1,2,9,14)); *J*(10,11) = 4,8, *J*(10,12) = 3,5, *J*(1,13) = 1,5, *J*(1,10) = 1,5. Anal. ber. für C₂₀H₁₆ (256,35): C 93,71, H 6,29; gef.: C 93,49, H 5,95.

Hexacyclo[*11*.7.0.0^{2,10}.0^{3,8}.0^{9,14}.0^{15,20}]*icosa*-3,5,7,15,17,19-*hexaen* (**13c**). Eine Lsg. von 500 mg (2,0 mmol) **29** in 15 ml AcOEt wird über Pd/C hydriert: 470 mg (93%) farblose, quaderförmige Kristalle. Schmp. 180–181° (aus EtOH). Die Einkristalle für die Röntgenstrukturanalyse werden aus Et₂O/EtOH 1:1 durch langsames Verdunsten des Lsgm. erhalten. UV (Isooctan): 260 (sh, 870), 269 (1430), 279 (1290). IR (KBr): 3075, 3035, 3005, 2920, 2885, 2850, 1460, 1310, 1170, 925, 750, 732, 508. ¹H-NMR (250 MHz, CDCl₃): 6,72–6,64 (*AA'BB'*, arom. H); 3,07 (*m*, H–C(1,2,9,14)); 2,58 (*m*, H–C(10,13)); 2,03 (*m*, H–C(11,12)). ¹³C-NMR (20,15 MHz, CDCl₃): 151,0 (*s*, C(3,8,15,20)); 124,7 (*d*, C(4,7,15,19)); 123,0 (*d*, C(5,6,17,18)); 49,6 (*d*, C(10,13)); 45,4 (*d*, C(1,2,9,14)); 20,6 (*t*, C(11,12)). Anal. ber. für C₂₀G₁₈ (258,36): C 92,98, H 7,02; gef.: C 92,77, H 6,88.

12-Oxaheptacyclo[12.7.0. $0^{2.10}$. $0^{3.8}$. $0^{9.15}$. $0^{11.3}$. $0^{16.21}$]henicosa-3,5,7,16,18,20-hexaen (**30**). Die Lsg. von 100 mg (0,4 mmol) **29** in 20 ml CH₂Cl₂ wird bei 0° mit 150 mg (0,7 mmol) 85% 3-Chlorperbenzoesäure versetzt und 24 h unter N₂ gerührt. Nach Filtrieren wird mit 10% Na₂S₂O₅-Lsg. und 10% Na₂CO₃-Lsg. ausgeschüttelt, getrocknet (MgSQ₄) und eingedampft. Der feste Rückstand wird aus CCl₄ in der Kälte umkristallisiert: 90 mg (85%) farblose Kristalle. Schmp. 186–187°. UV (Isooctan): 260 (sh, 680), 269 (1080), 278 (960). IR (KBr): 3055, 3030, 3020, 3005, 2955, 2935, 2915, 1460, 1455, 1428, 1280, 1162, 1010, 855, 842, 780, 767, 750, 733, 695, 635, 550, 537, 505. ¹H-NMR (250 MHz, CDCl₃): 6,75–6,62 (m, arom.H); 3,61 (m, H–C(11,13)); 3,24 (m, H–C(1,2,9,15)); 3,14 (m, H–C(10,14)). Anal. ber. für C₂₀H₁₆O (272,35): C 88,20, H 5,92; gef.: C 87,96, H 5,71.

3.7-Diiodpentacyclo[6.4.0. $0^{2.6}$. $0^{4.2}$. $0^{5.9}$]dodecan (Epimerengemisch, **33**). In ein Gemisch aus 120,0 g 85% H₃PO₄ und 90,0 g P₂O₅ rührt man 160,0 g KI und 28,9 g (0,15 mol) **32** ein und erwärmt die zähe Masse 16 h auf 100°. Das schwarzbraune Gemisch wird mit *ca*. 1 kg zerstossenem Eis versetzt und mit Et₂O extrahiert. Die Extrakte werden mit 10% NaHSO₃-Lsg. und H₂O gewaschen, getrocknet (MgSO₄) und eingedampft: 44,0 g (71%) braunes Öl. Zur Analyse wird eine Probe aus Aceton kristallisiert, wobei ein C(2)-Epimer anfällt: Schmp. 162°. IR (KBr): 2950, 2930, 2855, 1455, 1440, 1312, 1285, 1270, 1260, 1210, 1200, 1182, 1172, 1155, 1150, 990, 895, 815, 760, 708, 635, 663. ¹H-NMR (250 MHz, CDCl₃): 3,99, 3.87 (2 br. s, 2H); 3,20, 2.53 (2m, 2H); 2,60 (m, 2H); 2,16 (m, 4H); 1,74–1,40 (überlappende m, 4H). Anal. ber. für C₁₂H₁₄I₂ (412,05): C 34,98, H 3,42, I 61,60; gef.: C 34,82, H 3,33, I 61,54.

13-Oxahexacyclo[$6.4.1.0^{2.7}.0^{3.11}.0^{6.10}.0^{9.12}$]tridecan-1-ol (34) und Tetracyclo[$6.4.0.0^{4.12}.0^{5.9}$]dodec-6-en-2-on (35). Ein Gemisch von 30,0 g (0,16 mol) 31 und 75,0 g Zn-Pulver in 500 ml AcOH wird bei 50–60° 24 h intensiv gerührt. Nach Filtration von Zn-Resten engt man auf 100 ml ein, wobei sich ZnAc₂ abscheidet. Man versetzt mit 500 ml H₂O, extrahiert mit CH₂Cl₂, wäscht die Extrakte mit ges. NaHCO₃-Lsg. und trocknet (MgSO₄). Nach Abziehen des Lsgm. wird an Kieselgel getrennt. Mit CCl₄/CH₂Cl₂ 1:1 eluiert man 16,9 g (61%) 35 als schwach rosa gefärbten, wachsartigen Feststoff (Sublimation bei 80°/15 Torr), mit CH₂Cl₂/MeOH 2:1 10,3 g (34%) 34.

34: Schmp. 191–193° (aus EtOH; [29]: 191–192°). IR (KBr): 3240, 3010, 2990, 2970, 2960, 2940, 2920, 2890, 2870, 1350, 1340, 1315, 1300, 1295, 1145, 1110, 1050, 1025, 1005, 1000, 935, 925, 910, 900, 860, 750, 670, 620, 525. ¹H-NMR (360 MHz, CDCl₃); 4,72 (br. *s*, 1 H); 4,63 (*t*, 1 H); 2,89 (*m*, 1 H); 2,53 (*m*, 1 H); 2,48–2,35 (*m*, 3 H); 2,06–2,00 (*m*, 2 H); 1,77 (*m*, 1 H); 1,65–1,26 (*m*, 4 H). Anal. ber. für C₁₂H₁₄O₂ (190,24): C 75,76, H 7,42; gef.: C 75,69, H 7,38.

35: Schmp. 184° (aus Pentan). UV (CH₃CN): 294 (25), 304 (25), 315 (20). IR (KBr): 3055, 2970, 2930, 2860, 1735, 1415, 1342, 1335, 1270, 1260, 1140, 1115, 1090, 888, 855, 790, 770, 750, 682, 570, 540. ¹H-NMR (360 MHz, CDCl₃): 6.23 (*dd*, H–C(2)); 6.17 (*dd*, H–C(3)); 2,58 (*m*, H–C(4)); 2,43 (*m*, H–C(1)); 2,34 (*m*, H–C(8)); 2,27 (*ddd*, H–C(3)); 2,59 (*m*, H–C(4)); 2,43 (*m*, H–C(1)); 2,44 (*m*, H–C(8)); 2,27 (*ddd*, H–C(8)); 2,27 (*ddd*, H–C(8)); 2,28 (*m*, H–C(8)); 2,28

H-C(5)); 2,19 (*m*, H-C(12)); 2,12 (*d*, H_{iendo}-C(7)); 2,04 (*m*, H-C(9)); 1,96 (*dd*, H_{iendo}-C(7)); 1,90-1,78 (*m*, H-C(10,11)); J(7'endo', 7'exo') = 17,5, J(7'exo', 8) = 5,5, J(1,8) = 9,0. Anal. ber. für C₁₂H₁₄O (174,24): C 82,72, H 8,10; gef.: C 82,61, H 8,29.

(4-Methylphenyl)sulfonylhydrazon 36 von 35. Eine Lsg. von 688 mg (3,9 mmol) 35 und 742 mg (4,0 mmol) (4-Methylphenyl)sulfonylhydrazin wird in 20 ml abs. EtOH 5 h zum Rückfluss erhitzt. Einengen auf 10 ml und Kristallisation bci 0° liefern 1,15 g (84%) feine Kristalle, die abgesaugt und mit wenig kaltem EtOH gewaschen werden. Schmp. 168° (Zers.). IR (KBr): 3220, 3050, 2920, 2900, 2850, 1590, 1400, 1335, 1175, 1165, 1085, 1025, 1005, 915, 805, 770, 705, 695, 680, 660, 590, 550. ¹H-NMR (90 MHz, CDCl₃): 7,78 (*d*, 2 H); 7,23 (*d*, 2 H); 5,84 (*dd*, 1 H); 5,57 (*dd*, 1 H); 2,70–2,07 (*m*, 7 H); 2,03–1,90 (*m*, 3 H); 1,70 (br. *s*, 6 H). Anal. ber. für C₁₉H₂₂N₂O₂S (342,39): C 66,64, H 6,48, N 8,18, S 9,35; gef.: C 66,46, H 6,26, N 8,07, S 9,14.

Tetracyclo[6.4.0.0^{4,12}.0^{5,9}]dodeca-2,6-dien (1c). a) Dehalogenierung von 33. Eine Lsg. von 41,20 g (0,1 mol) kristallinem 33 in 100 ml abs. THF wird unter N₂ bei RT. zu einer Suspension von 12,00 g Na (0,52 mol) in 100 ml abs. Et₂O innerhalb 1 h zugetropft, wobei sich die Mischung zum Rückfluss erhitzt. Danach wird weitere 6 h unter Rückfluss erhitzt, von Na-Resten abdekantiert und mit 500 ml H₂O hydrolysiert. Die PE (30–50°)-Extrakte werden mehrfach mit H₂O gewaschen, getrocknet (MgSO₄) und nach Filtration über Kieselgel eingedampft. Das gelbe Öl wird mit PE (30–50°) an mit AgNO₃ imprägniertem Träger chromatographiert (40,0 g AgNO₃ in 38 ml dest. H₂O auf 200,0 g Al₂O₃). Nach Elution der nicht komplex-fähigen Anteilc wird das Gemisch aus Säulenmaterial und 500 ml konz. NH₃-Lsg. wiederholt mit 200-ml-Portionen Pentan intensiv gerührt. Die getrockneten Pentan-Phasen werden im schwachen N₂-Strom über eine *Vigreux*-Kolonne eingeengt, der Rückstand wird bei 60°/15 Torr sublimiert: 11,8 g (75%) farblose, wachsartige Kristalle von intensivem Geruch. Schmp. 129–131°.

b) Bamford-Stevens-*Abhau von* **36**. Zur Lsg. von 450 mg (1,3 mmol) **36** in 10 ml abs. Et₂O werden bei 0° 10 ml (10,0 mmol) 1M MeLi-Lsg. in Et₂O getropft, wobei sofort Gelbfärbung und Gasentwicklung eintritt. Man rührt 14 h bei RT. und erhitzt dann 2 h zum Rückfluss, hydrolysiert vorsichtig mit 50 ml H₂O und extrahiert mit Pentan. Nach Einengen und Chromatographie an Kieselgel (Pentan): 110 mg (54%) reines **1c**. IR (KBr): 3050, 2930, 2850, 1575, 1455, 1330, 1270, 925, 850, 775, 730, 655. ¹H-NMR (250 MHz, CDCl₃): 6,12 (*m*, H–C(2,3,6,7)); 2,40 (*m*, H–C(9,12)); 2,20 (*m*, H–C(1,4,5,8)); 1,88 (*m*, H–C(10,11)). ¹³C-NMR (62,8 MHz, CDCl₃): 141,8 (*d*, C(2,3,6,7)); 52,6 (*d*, C(9,12)); 43,4 (*d*, C(1,4,5,8)); 21,7 (*t*, C(10,11)). Anal. ber. für C₁₂H₁₄ (158,24): C 91,08, H 8,92; gef.: C 91,02, H 8,83.

Tetracyclo[7.3.0.0^{2,6}.0^{3,12}]*dodeca-4*,10-*dien* (**3c**). Eine Lsg. von 95 mg (0,6 mmol) **1c** wird in 1 ml Benzol unter N₂ 16 h zum Rückfluss erhitzt, das Lsgm. über eine *Vigreux*-Kolonne abdestilliert und der Rückstand nach Filtration über Kieselgel (Pentan) bei 60°/15 Torr sublimiert: 70 mg (74%) farblose, wachsartige Kristalle. Schmp. 70–72°. IR (KBr): 3050, 3020, 2995, 2950, 2900, 2860, 1585, 1450, 1410, 1365, 1290, 790, 680, 625. ¹H-NMR (250 MHz, CDCl₃): 5,78 (*d*, H–C(5,10)); 5,54 (*d*, H–C(4,11)); 3,47 (*m*, H–C(3,12)); 2,85 (*m*, H–C(1,2,6,9)); 1,74–1,48 (*m*, H–C(7,8)). Anal. ber. für C₁₂H₁₄ (158,2): C 91,08, H 8,92; gef.: C 91,28, H 8,73.

4,5,6,7-Tetrachlorpentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]hexadeca-4,6-dien-11-on (**37**). Eine Lsg. von 10,00 g (57,4 mmol) **35** und 15,00 g (59,1 mmol) **5** in 11 ml 1,2-Dichlorethan wird unter N₂ 5 h zum Rückfluss erhitzt. Beim Abkühlen entsteht ein dichter Kristallbrei, der abgesaugt und mit wenig kaltem CCl₄ gewaschen wird. Aus der Mutterlauge kann weiteres Produkt isoliert werden, insgesamt 14,73 g (70%) farblose Kristalle. Schmp. 211°. UV (Isooctan): 255 (sh, 1200), 265 (2050), 275 (3350), 286 (4900), 298 (5500), 312 (3300). IR (KBr): 2955, 2930, 2915, 2890, 2855, 1735, 1610, 1215, 1148, 1088, 840, 810, 750, 720, 690. ¹H-NMR (250 MHz, C₆D₆): 2,65, 2,45 (2 d, H-C(3,8)); 2,35 (ddd, H-C(2)); 2,24 (ddd, H-C(9)); 2,10 (ddd, H-C(10)); 1,89 (dddd, H-C(13)); 1,83 (d, H_{endo}-C(12)); 1,47 (dd, H_{exo}-C(12)); 1,31 (m, H-C(1)); 1,25-1,07 (m, H-C(15,16)); 0,98 (H-C(14)); J(1,2) = J(1,9) = J(10,14) = J(13,14) = 3,0, J(2,13) = 9,7, J(3,8) = 12,0, J(9,10) = 10,5, J(12'exo', 12'endo') = 18,5, J(12'exo', 13) = 6,0. Anal. ber. für C₁₆H₁₄Cl₄O (364,10): C 52,78, H 3,88, Cl 38,95; gef.: C 52,51, H 3,61, Cl 38,88.

(4-7)-Trichlorpentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]hexadeca-3,5,7-trien-11-on⁷) (Isomerengemisch, **38**). Eine Lsg. von 7,20 g (19,8 mmol) **37** und 10,00 g (0,18 mol) KOH in 700 ml abs. EtOH wird 1 h unter Rückfluss gekocht. Man engt auf 100 ml ein, verdünnt mit 400 ml H₂O und extrahiert mit CH₂Cl₂. Nach Trocknen (MgSO₄) wird eingedampft und das hellbraune Öl aus EtOH kristallisiert: 6,28 g (97%) lange, farblose Kristalle. Schmp. 136–138°. UV (Isooctan): 275 (sh, 300), 282 (420), 292 (390), 312 (50), 327 (20). IR (KBr): 3060, 2960, 2930, 2900, 2860, 1730, 1420, 1310, 1178, 1138, 1122, 1020, 880, 740, 710, 562. ¹H-NMR (250 MHz, CDCl₃): 7,18 (*s*, arom. H); 3,51–3,39 (*m*, H–C(9*)); 3,36–3,24 (*m*, H–C(2*)); 2,72–2,55 (*m*, H–C(10,13)); 2,42 (*m*, H–C(1)); 2,14 (*m*, H–C(14)); 2,02 (br. dd, H_{exo}–C(12)); 2,02–1,84 (*m*, H–C(15,16)); 1,48–1,43 (2 d, H_{endo}–C(12)). Anal. ber. für C₁₆H₁₃Cl₃O (327,64): C 58,65, H 4,00, Cl 32,46; gef.: C 58,46, H 3,78, Cl 32,29.

(4-7)-Trichlorpentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]hexadeca-3,5,7-trien-11- 'endo'-ol⁷) (Isomerengemisch, **39**). Eine Lsg. von 7,20 g (22,0 mmol) **38** in 100 ml abs. THF wird innerhalb von 30 min zu einer Suspension von 1,00 g (26,3 mmol) LiAlH₄ in 100 ml abs. THF getropft und dann 2 h unter Rückfluss erhitzt. Nach vorsichtiger Hydrolyse mit 500 ml H₂O und Ansäuren mit 50 ml 30% H₂SO₄ wird mit CH₂Cl₂ extrahiert und die vereinigten Extrakte werden getrocknet (MgSO₄). Nach Eindampfen wird das farblose Öl (7.10 g, 98%) aus EtOH kristallisiert. Die erste Fraktion enthält ein einziges Isomer, kurze farblose Nadeln. Schmp. 144–145°. UV (Isooctan): 274 (sh. 270), 282 (380), 291 (330). IR (KBr): 3240, 2920, 2890, 2890, 1415, 1352, 1318, 1282, 1182, 1165, 1135, 1110, 1090, 977, 850, 840, 730. ¹H-NMR (250 MHz, CDCl₃): 7,16 (s, arom. H); 4,27 (*dd*, H–C(11)); 3,33 (*dd*, H–C(9*)); 3,25 (*ddd*, H–C(2*)); 2,39 (m, H–C(10,13)); 2,18–2,04 (m, H_{ex0}–C(12)), H–C(1)); 1,79 (m, H–C(15,16)); 1,69 (m, H–C(14)); 1,11 (br. s, OH); 0,73 (*dd*, H_{'endo}–C(12)); *J*(11,12'endo') = 45, *J*(11,2'exo') = 10,5, *J*(12'exo', 12'endo') = 14, *J*(12'exo', 13) = 6,5 Hz. Anal. ber. für C₁₆H₁₅Cl₃O (329,66): C 58,30, H 4,59, Cl 32,26; gef: C 58,26, H 4,52, Cl 32,16.

Pentacyclo[7.7.0.0^{2,13}.0^{3,8}.0^{10,14}]hexadeca-3,5,7-trien-11-'endo'-ol (**40**). Eine Lsg. von 4,50 g (13,7 mmol) **39** und 10,00 g (0,13 mol) *t*-BuOH in 150 ml abs. THF wird zum Rückfluss erhitzt. Unter N₂ gibt man 3,50 g (0,15 mol) fein geschnittenes Na portionsweise innerhalb 1 h zu. Nach 8 h dekantiert man von Na-Resten ab und

Molekül 1	x/a	y/b	z/c	Н
C(1)	0,540 (1)	0,667 (1)	0,9030 (5)	25
C(2)	0,339 (1)	0,478 (1)	0,9036 (5)	27
C(3)	0,336(1)	0,571 (1)	0,8320 (5)	
C(3')	0,478 (1)	0,778 (1)	0,7703 (5)	24
C(4)	0,455(1)	0,677 (1)	0,8293 (5)	
C(4')	0,372(1)	0,769 (1)	0,7100 (5)	23
C(5')	0,254 (1)	0,661 (1)	0,7087 (5)	22
C(6)	0,419(1)	0,599 (1)	0,9572 (5)	26
C(6')	0,231 (1)	0,559(1)	0,7714 (5)	21
C(7)	0,500(1)	0,500 (1)	0,0186 (5)	28
H(21)	0,148	0,487	0,773	
H(22)	0,189	0,655	0,666	
H(23)	0,382	0,840	0,669	
H(24)	0,561	0,850	0,770	
H(25)	0,587	0,765	0,913	
H(26)	0,355	0,675	0,981	
H(27)	0,239	0,439	0,915	
H(28)	0,432	0,442	1,050	
Molekül 2				
C(1)	0,832(1)	0,482 (1)	0,4027 (5)	33
C(2)	1,041 (1)	0,655(1)	0,4053 (5)	35
C(3)	0,956 (1)	0,677 (1)	0,4765 (5)	
C(3')	0,735(1)	0,560 (1)	0,5373 (5)	32
C(4)	0,835 (1)	0,566 (1)	0,4749 (5)	
C(4')	0,756 (1)	0,662 (1)	0,5968 (5)	31
C(5')	0,876 (1)	0,771 (1)	0,5973 (5)	30
C(6)	0,916 (1)	0,598 (1)	0,3506 (5)	34
C(6')	0,976 (1)	0,777 (1)	0,5367 (5)	29
C(7)	1,000 (0)	0,500 (0)	0,2917 (5)	36
H(29)	1,058	0,850	0,536	
H(30)	0,888	0,840	0,639	
H(31)	0,687	0,657	0,638	
H(32)	0,653	0,487	0,538	
H(33)	0,732	0,446	0,390	
H(34)	0,854	0,675	0,327	
H(35)	1,094	0,750	0,396	
H(36)	1,067	0,560	0,261	

Tab. 5. Kristallkoordinaten von 13b

hydrolysiert mit 400 ml Eiswasser. Nach Extraktion mit CH_2Cl_2 werden die Extrakte mit H_2O gewaschen, getrocknet (MgSO₄) und eingedampft. Das blassgelbe Öl wird an Kieselgel (CCl₄) chromatographiert: 2,59 g (84%) farbloses Öl, das aus Pentan in der Kälte kristallisiert. Kleine, farblose Rauten. Schmp. 94–95°. UV (Isooctan): 233 (sh, 1600), 257 (sh, 410), 264 (760), 270 (1170), 277 (1240). IR (KBr): 3570, 3070, 3050, 3030, 3010, 2930, 2850, 1460, 1408, 1250, 1138, 1080, 1030, 967, 745. ¹H-NMR (250 MHz, CDCl₃): 7,34 (*m*, H–C(7)); 7,18–7,01 (*m*, H–C(4,5,6)); 4,08 (*m*, H–C(11)); 3,06 (*m*, H–C(2,9)); 2,38–2,22 (*m*, H–C(10,13)); 2,13–1,99 (*m*, H_{cxo}–C(12), H–C(1)); 1,78 (*m*, H–C(15,16)); 1,56 (*m*, H–C(14)); 1,19 (br. *s*, OH); 0,69 (*dd*, H_{cendo}–C(12)). Anal. ber. für C₁₆H₁₈O (226,32): C 84,91, H 8,02; gef.: C 84,70, H 8,19.

[Pentacyclo[7.7.0.0^{2,13}.0^{3.8}.0^{10,14}]hexadeca-3,5,7-trien-11-'endo'-yl]-methansulfonat (**41**). Eine Lsg. von 1,60 g (7,1 mmol) **40** und 1,0 g (8,7 mmol) MsCl in 110 ml abs. CH_2Cl_2 wird bei 0° unter N₂ innerhalb von 30 min tropfenweise mit 0,90 g (8,9 mmol) abs. Et₃N versetzt. Nach 15 min Rühren bei 0° giesst man auf 200 ml H₂O und wäscht die org. Phase mit 10% HCl, ges. Na₂CO₃-Lsg. und H₂O. Nach Trocknen (MgSO₄) wird eingedampft und

Atom	x/a	y/b	z/c	H
C(1)	0,6625 (7)	0,2335 (9)	0,7454 (3)	38
C(2)	0,6620 (8)	0,1513 (10)	0,8178 (3)	
C(3)	0,5513 (7)	0,0320 (9)	0,8167 (4)	
C(3')	0,5283 (7)	-0,0675 (10)	0,8736 (4)	34
C(3")	0,4489 (8)	0,4627 (10)	0,8761 (4)	25
C(4)	0,4726 (7)	0,0331 (9)	0,7425 (3)	33
C(4')	0,6254 (10)	0,0500 (11)	0,9339 (4)	35
C(4")	0,3372 (10)	0,4399 (11)	0,9337 (4)	26
C(5)	0,3408 (7)	0,1640 (9)	0,7425 (3)	29
C(5')	0,7334 (10)	0,0698 (12)	0,9354 (4)	36
C(5")	0,2261 (10)	0,3247 (11)	0,9301 (4)	27
C(6)	0,3273 (7)	0,2497 (10)	0,8140 (3)	
C(6')	0,7596 (7)	0,1753 (10)	0,8784 (4)	37
C(6")	0,2149 (8)	0,2266 (11)	0,8714 (4)	28
C(7)	0,4371 (8)	0,3663 (10)	0,8175 (4)	
C(8)	0,5287 (7)	0,3646 (9)	0,7461 (3)	24
C(9)	0,3956 (7)	0,3042 (10)	0,6970 (3)	23
C(10)	0,4491 (8)	0,2609 (10)	0,6194 (3)	21, 22
C(11)	0,5764 (7)	0,1374 (9)	0,6205 (3)	30, 31
C(12)	0,6146 (6)	0,0957 (10)	0,6984 (3)	32
H(21)	0,489	0,350	0,596	
H(22)	0,363	0,223	0,594	
H(23)	0,318	0,378	0,688	
H(24)	0,578	0,459	0,734	
H(25)	0,527	0,540	0,878	
H(26)	0,339	0,504	0,975	
H(27)	0,155	0,313	0,969	
H(28)	0,138	0,149	0,870	
H(29)	0,251	0,110	0,728	
H(30)	0,667	0,175	0,597	
H(31)	0,541	0,048	0,597	
H(32)	0,696	0,024	0,691	
H(33)	0,426	-0,060	0,728	
H(34)	0,451	-0,145	0,873	
H(35)	0,617	-0,120	0,973	
H(36)	0,793	0,081	0,977	
H(37)	0,833	0,256	0,880	
H(38)	0,755	0,286	0,731	_

Tab. 6. Kristallkoordinaten von 13c

der blassgelbe, ölige Rückstand an Kieselgel chromatographiert (CH₂Cl₂). Das farblose Öl (1,96 g, 91 %) kristallisiert bei -20° aus Pentan. Farblose Kristalle, Schmp. 78-79°. UV (Isooctan): 231 (sh, 1220), 250 (sh, 160), 257 (sh, 340), 263 (600), 269 (940), 276 (1000). IR (KBr): 3010, 2950, 2935, 2920, 2900, 2860, 1345, 1327, 1180, 1165, 1145, 977, 950, 878, 740, 525. ¹H-NMR (250 MHz, CDCl₃): 7,32 (m, H–C(7)); 7,09 – 6,96 (m, H–C(4,5,6)); 4,90 (ddd, H–C(11)); 3,07 (m, H–C(2,9)); 2,68 (s, CH₃); 2,63 (m, H–C(10*)); 2,32 (m, H–C(13*)); 2,15 (m, H–C(1)); 2,05 (ddd, H_{exo}–C(12)); 1,82 (m, H–C(15,16)); 1,65 (m, H–C(14)); 1,11 (dd, H_{endo}–C(12)). Anal. ber. für C₁₇H₂₀SO₃ (304,41): C 67,08, H 6,62, S 10,53; gef.: C 66,98, H 6,55, S 10,47.

LITERATURVERZEICHNIS

- [1] Review: G. Kaupp, Angew. Chem. 1980, 92, 245; ibid. Int. Ed. 1980, 19, 243.
- [2] H. Prinzbach, G. Sedelmeier, C. Krüger, R. Goddard, H.-D. Martin, R. Gleiter, Angew. Chem. 1978, 90, 297; ibid. Int. Ed. 1978, 17, 271.
- [3] H. Higuchi, K. Takatsu, T. Otsubo, Y. Sakata, S. Misumi, Tetrahedron Lett. 1982, 23, 671; H. Higuchi, E. Kobayashi, Y. Sakata, S. Misumi, Tetrahedron 1986, 42, 1731.
- [4] G. Sedelmeier, Dissertation, Univ. Freiburg, 1979; W.-D. Fessner, Diplomarbeit, Univ. Freiburg, 1981.
- [5] W.-D. Fessner, H. Prinzbach, G. Rihs, Tetrahedron Lett. 1983, 24, 5857; W.-D. Fessner, Dissertation, Univ. Freiburg, 1986; W.-D. Fessner, G. Sedelmeier, P. R. Spurr, G. Rihs, H. Prinzbach, J. Am. Chem. Soc. 1987, 109, 4626.
- [6] W.-D. Fessner, Bulusu A.R.C. Murty, H. Prinzbach, Angew. Chem. 1987, 99, 482; ibid. Int. Ed. 1987, 26, 451;
 W.-D. Fessner, Bulusu A.R.C. Murty, J. Wörth, D. Hunkler, H. Fritz, H. Prinzbach, W.D. Roth, P.v.R. Schleyer, A. B. McEwen, W. F. Maier, Angew. Chem. 1987, 99, 484; ibid. Int. Ed. 1987, 26, 452.
- [7] G. Sedelmeier, W.-D. Fessner, C. Grund, P.R. Spurr, H. Fritz, H. Prinzbach, Tetrahedron Lett. 1986, 27, 1277.
- [8] G. Sedelmeier, W.-D. Fessner, R. Pinkos, C. Grund, Bulusu A. R. C. Murty, D. Hunkler, G. Rihs, H. Fritz, C. Krüger, H. Prinzbach, Chem. Ber. 1986, 119, 3442.
- [9] Bulusu A. R. C. Murty, P. R. Spurr, R. Pinkos, C. Grund, W.-D. Fessner, D. Hunkler, H. Fritz, W. R. Roth, H. Prinzbach, *Chimia* 1987, 41, 32.
- [10] P. E. Eaton, L. Cassar, R. A. Hudson, D. R. Hwang, J. Org. Chem. 1976, 41, 1445; A.P. Marchand, T.-C. Chou, J.D. Ekstrand, D. van der Helm, *ibid.* 1976, 41, 1438.
- [11] G. Sedelmeier, H. Prinzbach, H.-D. Martin, Chimia 1979, 33, 329.
- [12] J.S. McKennis, L. Brener, J.S. Ward, R. Pettit, J. Am. Chem. Soc. 1971, 93, 4957.
- [13] L. A. Paquette, R. F. Davis, D. R. James, *Tetrahedron Lett.* 1974, 1615; L. A. Paquette, D. R. James, G. Klein, J. Org. Chem. 1978, 43, 1287.
- [14] G.R. Underwood, B. Ramamoorthy, Tetrahedron Lett. 1970, 4125.
- [15] E.C. Smith, J.C. Barborak, J. Org. Chem. 1976, 41, 1433.
- [16] M.S. Raasch, J. Org. Chem. 1980, 45, 856.
- [17] J.S. Newcomer, E.T. McBee, J. Am. Chem. Soc. 1949, 71, 946; P.G. Gassman, J.L. Marshall, Org. Synth. 1968, 48, 68.
- [18] M.T. Reetz, Tetrahedron 1973, 29, 2189.
- [19] Y.-H. Lai, Synthesis 1981, 585.
- [20] P.G. Gassman, J.L. Marshall, Org. Synth. 1968, 48, 68.
- [21] P. P. Fu, R. G. Harvey, Chem. Rev. 1978, 78, 317.
- [22] K. Mackenzie, G. J. Proctor, D. J. Woodnutt, Tetrahedron Lett. 1984, 25, 977 und zit. Lit.
- [23] M. N. Paddon-Row, H. K. Patney, L. N. Pasupuleti, Aust. J. Chem. 1982, 35, 307.
- [24] I.A. Akhtar, G.I. Fray, J.M. Yarrow, J. Chem. Soc. C 1968, 812.
- [25] Vgl. F. Vögtle, P. Neumann, Topics Curr. Chem. 1974, 48, 67 und zit. Lit.
- [26] D. Valentine, N.J. Turro, G.S. Hammond, J. Am. Chem. Soc. 1964, 86, 5202; R.C. Cookson, E. Crundwell, R. R. Hill, J. Hudec, J. Chem. Soc. 1964, 3062.
- [27] D. A. Dougherty, C. S. Choi, G. Kaupp, A. B. Buda, J. M. Rudzinski, E. Osawa, J. Chem. Soc., Perkin Trans. 2 1986, 1063 und zit. Lit.
- [28] MNDO: M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 1977, 99, 4899; QCPE Nr. 353; MINDO/3: R.C. Bingham, M.J.S. Dewar, D.H. Lo, J. Am. Chem. Soc. 1975, 97, 1285; QCPE Nr. 279.

- [29] O. Ermer, C.-D. Bödecker, H. Preut, Angew. Chem. 1984, 96, 57; ibid. Int. Ed. 1984, 23, 55.
- [30] H. Irngartinger, Chem. Ber. 1975, 108, 1017.
- [31] W. M. Macintyre, A. H. Tench, J. Org. Chem. 1973, 38, 130.
- [32] J. M. Robertson, 'Organic Crystals and Molecules', Cornell University Press, Ithaca-New York, 1953.
- [33] D.C. Dong, J.T. Edward, Can. J. Chem. 1980, 58, 1324.
- [34] R. Hoffmann, A. Imamura, W. Hehre, J. Am. Chem. Soc. 1968, 90, 1499; R. Hoffmann, Acc. Chem. Res. 1971, 4, 1; R. Gleiter, Angew. Chem. 1974, 86, 770 und zit. Lit; ibid. Int. Ed. 1974, 13, 696.
- [35] E. Heilbronner, Z.-z. Yang, Topics Curr. Chem. 1983, 115, 1.
- [36] K. Lonsdale, H.J. Milledge, K.V.K. Rao, Proc. Roy. Soc. 1960, A555, 82; H. Hope, J. Bernstein, K.N. Trueblood, Acta Crystallogr., Sect. B 1972, 28, 1733.
- [37] B. Kovač, M. Allan, E. Heilbronner, Helv. Chim. Acta 1981, 64, 430.
- [38] E. Honegger, E. Heilbronner, N. Hess, H.-D. Martin, Chem. Ber. 1985, 118, 2927.
- [39] B. Kovač, M. Mohraz, E. Heilbronner, V. Boekelheide, H. Hopf, J. Am. Chem. Soc. 1980, 102, 4314.
- [40] E. Heilbronner, J. P. Maier, in 'Electron Spectroscopy, Theory, Techniques and Applications', Eds. C. R. Brundle and A. D. Baker, Academic Press, London, 1977, Vol. 1.
- [41] F. Brogli, E. Giovannini, E. Heilbronner, R. Schuster, Chem. Ber. 1973, 106, 961.
- [42] Z.-z. Yang, B. Kovač, E. Heilbronner, C. W. Chan, H. N.C. Wong, H. Hopf, F. Vögtle, *Helv. Chim. Acta* 1987, 70, 299.